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Abstract

We investigate methods for power and bandwidth efficient communication.
The approach we consider is based on powerful binary error correcting codes
and we construct coded modulation schemes which are able to perform close
to the capacity of the channel.

We focus on the additive white Gaussian noise channel. For this channel a
Gaussian distribution maximizes mutual information and signal shaping has
to be used to get close to capacity. We investigate a simple method of signal
shaping based on the superposition of binary random variables. With multi-
stage decoding at the receiver, the original coding problem is transformed into
a coding problem for a set of equivalent binary-input output-symmetric chan-
nels. It is shown that with the method signal constellations can be designed for
high spectral efficiencies which have their capacity limit within 0.1 dB of the
capacity of the AWGN channel. Furthermore, low-density parity-check codes
are designed for the equivalent binary channels resulting from this modulation
method. We show how to approach the constrained capacity limit of the signal
constellations we design very closely.

A downside of multistage decoding is that multiple binary error-correcting
codes are used. We show how one can limit the number of error-correcting
codes used by merging bit-interleaved coded modulation and signal shaping.
This results in a coded modulation scheme which is able to approach the ca-
pacity of the AWGN channel closely for any spectral efficiency.

These coded modulation methods transform the coding problem for the
original channel into a coding problem for a set of binary channels. Depend-
ing on the design of the modulation scheme these channels are symmetric or
not. We show how to characterize channel symmetry in general and how these
results can be used to design coded modulation schemes resulting in a set of
symmetric binary channels.
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Chapter 1

Introduction

The subject of this thesis is reliable communication over general channels close
to the theoretical limits. The theoretical limit is given by the Shannon capacity
of the channel and for many practical channel models the Shannon limit is
a function of transmission power and signal bandwidth. Once these two are
fixed we wish to achieve reliable communication while transmitting at a rate
close to the Shannon limit. In this thesis we investigate coding and modulation
methods for power and bandwidth efficient communication.

Our work is inspired by the success of binary sparse graph codes on bi-
nary channels. Low-density parity-check (LDPC) codes [1] can be constructed
for which it can be proven that they are capable of achieving capacity on the
binary erasure channel [2]. Furthermore, for the binary-input additive white
Gaussian noise (BIAWGN) channel, LDPC codes have been designed which
perform very close to the theoretical limit1. Similar results can be obtained for
other families of sparse graph codes such as repeat accumulate (RA) codes.

We investigate methods for achieving a near-capacity performance on non-
binary channels with binary error-correcting codes. We focus on high spectral
efficiencies where the use of binary signaling suffers from a large loss in capac-
ity. In the end the goal is to construct schemes which perform within tenths of
a decibel from capacity at high spectral efficiencies.

1In [3] LDPC codes are designed which have a threshold within 0.0045 dB of the BIAWGN
channel. Moreover, a low bit-error rate is achieved within 0.04 dB of the capacity of the channel.
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2 Chapter 1. Introduction

PSfrag replacements
Source Encoder

Channel

DecoderSink

Noise

Figure 1.1: Block diagram of communication system.

1.1 Information Theory

One of the major contributions of Shannon’s A Mathematical Theory of Commu-
nication [4] is the stochastic model of the communication system. A physical
communication system is divided in several parts as shown in Figure 1.1. The
source provides us with information to be transmitted across the channel. The
encoder and decoder have to be designed in such a way that information can
be transmitted across the channel efficiently and reliably. In information the-
ory mathematical models are derived for the source and the channel and these
models are usually stochastic in nature.

We assume that the source can be modeled as follows. The source provides
a sequence {Si}n

i=1 of independent and identically distributed (i.i.d.) random
bit variables. Moreover, we assume that the distribution of each of the Si is
uniform. This stochastic process provides us with a maximum entropy and
there is no need for source encoding and decoding. Hence the encoder and
decoder in Figure 1.1 are a channel encoder and a channel decoder.

A fundamental channel model is the discrete memoryless channel (DMC).
Consider a DMC with input alphabet X and output alphabet Y. The channel
is defined by a probability mass function fY|X(y|x) where fY|X(y|x) denotes
the probability of observing y as a channel output when x is transmitted. For a
DMC the mutual information between the channel input X and channel output
Y is given by

I(Y; X) = ∑
x∈X

∑
y∈Y

fY|X(y|x) fX(x) log2
fY|X(y|x)

∑x′∈X fY|X(y|x′) fX(x′)
, (1.1)

where fX defines the distribution over the input alphabet X. The capacity of the
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1.2 Coded Modulation 3

channel is defined as the maximum value of I(Y; X) where the maximization
is performed over all distributions on the channel input

C = max
fX

I(Y; X). (1.2)

The operational characterization of the channel capacity is given by a coding
theorem. The capacity of the channel is the maximum amount of information
we can transmit across the channel with arbitrary reliability.

Although, the DMC is a very simple channel model, it shares the important
features with the channels we are interested in. Given a channel we associate
with the channel input a stochastic process. This process is disturbed by noise
and the output of the channel is a stochastic process also. Next, we associate
a quantity I(Y; X) to the channel whose operational meaning is related to the
amount of information we can transmit reliably on the channel. Furthermore,
the capacity of the channel is denoted by C and it is related to the maximum
rate at which we can transmit information reliably. Note that not all channels
fit this picture and Figure 1.1 is a simplified model.

Usually we only have limited options to change the characteristics of the
channel. However, there are often degrees of freedom in designing the input
process such that a performance close to the theoretical limit C becomes pos-
sible at acceptable computational complexity. We investigate low-complexity
schemes for coded modulation which have the potential to approach the capacity
of several channels very closely.

1.2 Coded Modulation

Consider a channel on which we wish to communicate reliably. We assume that
the channel has capacity C which is achieved for some optimal input stochastic
process. A capacity achieving coding scheme should essentially lead to this
optimal input process. However, from a practical point of view this process
is often difficult to realize with error-control coding. We cannot simply use a
random codebook by sampling from the optimal input process. The reason
for this is that description complexity and decoding complexity would be too
high.

For certain codeword alphabets error-correcting codes can be defined which
allow for low-complexity storage, encoding and decoding. We investigate
methods to generate a channel input process based on a binary process. The
characteristics of the resulting stochastic process at the output of the channel
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{
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Figure 1.2: Illustration of Coded Modulation.

should be such that capacity is approached. We use modulation to transform
the source process into a suitable channel input process. An overview of the
method we is illustrated in Figure 1.2. We start with a set of d independent
binary stochastic processes. These processes can be obtained from a common
binary i.i.d. source. Next, a map Φ is applied to the realizations of the random
variables. We refer to Φ as the modulation map and it transforms a tuple of
bits to a channel input symbol. Furthermore, the resulting sequence of Zi can
be passed to a linear filter to further modify the properties of the channel input
process.

The use of multiple binary processes is related to the encoding and decod-
ing scheme used. In the end we can view the system as a collection of d binary
channels for which we can employ binary codes. The choice of the number of
processes and the decoding scheme employed has several consequences. First,
some schemes are easier to analyze and design. Second, the performance, en-
coding complexity and decoding complexity depend on the number of pro-
cesses and decoding method applied.

1.3 Channels with Additive Gaussian Noise

Our main example is the additive white Gaussian noise (AWGN) channel. Our
results can be extended to other channels and an initial result in this direction
is presented in [5] where we investigate coding for the continuous-time AWGN
channel with intersymbol interference.
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1.3 Channels with Additive Gaussian Noise 5

1.3.1 Discrete-time AWGN Channel

The discrete-time memoryless AWGN channel with input X and output Y is
defined by

Y = X + N, (1.3)

where N is zero-mean Gaussian noise with variance σ2. The density of N is
given by

fN(n) =
1√

2πσ2
e−

n2

2σ2 . (1.4)

The channel is defined by its transition probability density function fY|X

fY|X(y|x) = fN(y− x) =
1√

2πσ2
e−

(y−x)2

2σ2 . (1.5)

We denote the amount of energy expended per channel use by Es and it is given
by

Es = E
[

X2
]

, (1.6)

where E[·] denotes mathematical expectation. The signal-to-noise ratio (SNR)
is defined as

SNR =
Es

σ2 . (1.7)

The mutual information between X and Y is given by

I(Y; X) = H(Y)− H(Y|X) = H(Y)− H(N), (1.8)

and its maximum value is achieved for a Gaussian distribution on X which
leads to the following capacity formula

C =
1
2

log2(1 + SNR). (1.9)

To achieve capacity on the AWGN channel the distribution of the channel
input X should be Gaussian. The use of another input distributions leads to
a loss in capacity. This is illustrated in Figure 1.3 which shows a plot of the
capacity of the AWGN channel and the achievable rate when we restrict the
input to a discrete pulse-amplitude modulation (PAM) constellation with 64
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Figure 1.3: Capacity of the AWGN channel.

symbols. The achievable rate when the input is constrained to a signal constel-
lation is called the constrained constellation capacity. A PAM constellation with
64 symbols is defined by

S =
{

−26 + 2i− 1|i = 1, 2, 3, . . . , 26
}

, (1.10)

and the elements of the constellation symbols are selected with equal prob-
ability. The figure shows that for low SNRs there is hardly a loss compared
to a Gaussian channel input. However, for higher SNRs there is a substantial
loss. Techniques to bridge this gap are called signal shaping techniques and the
main theme of this thesis is how to bridge this gap with the coded modulation
scheme of Figure 1.2.
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1.4 State of the Art and Summary of the Results 7

1.4 State of the Art and Summary of the Results

In this section we give a short overview of the state of the art in modulation
and coding for the AWGN channel. We do not intend to give an exhaustive
overview, but present a summary of prior work and give a comparison with
our work.

1.4.1 Binary Channel Inputs

For low SNRs where the capacity of the AWGN is low, the loss resulting from
using binary channel inputs is small. At a transmission rate of 0.5 bit/use,
the loss with respect to capacity is only 0.18 dB and we can resort to binary
signaling schemes.

Turbo codes are introduced in [6] and they perform within 0.5 dB of the
constrained capacity limit while transmitting at a rate of 0.5 bit/use. In [3]
LDPC codes are designed which perform extremely close to capacity. At a
transmission rate of 0.5 bit/use, the distance to the constrained capacity limit
is only 0.04 dB.

1.4.2 Multilevel Codes and Bit-Interleaved Coded
Modulation

In [7] capacity approaching schemes based on LDPC codes are investigated
for transmission over the AWGN channel. The authors use multilevel cod-
ing (MLC) [8] and bit-interleaved coded-modulation (BICM) [9] together with
binary LDPC codes. The focus is on conventional signal constellations and sig-
nal shaping is not employed. At a transmission rate of 1 bit/use with a 4-PAM
constellation and a channel block length of 106, a low bit-error rate is achieved
within 0.14 dB of the constrained constellation capacity.

In [10] trellis shaping is combined with the use of binary LDPC codes. At a
transmission rate of 2 bit/use and a channel block length of 105 a low BER is
achieved within 0.81 dB of the capacity of the AWGN channel.

In [11] a method for signal shaping is proposed and combined with turbo
codes. For spectral efficiencies of 1 bit/use, 1.5 bit/use and 2 bit/use a low
BER is achieved at a distance of 1.0 dB, 1.2 dB and 1.4 dB of the capacity of the
AWGN channel. In Chapter 2 we show that with the method of signal shaping
presented in [11], we can achieve a good performance very close to the capacity
of the AWGN channel.
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8 Chapter 1. Introduction

1.4.3 Non-binary LDPC Codes

In [12] non-binary LDPC codes are designed for coded modulation on the
AWGN channel. One of the motivations of this paper is that for power and
bandwidth efficient communications binary LDPC codes are not that suitable.
For transmission on the AWGN channel spectral efficiencies of 3 bit/use and
4 bit/use are considered. Shaped signal constellations are designed by a method
proposed in [13]. The code designed for 3 bit/use has a channel block length
of 1.8 · 105 and a low bit-error rate is achieved at a distance of 0.56 dB from the
capacity of the AWGN channel. The distance to the constrained constellation
limit is 0.3 dB. The code designed for 4 bit/use has a channel block length of
105 and a low bit-error rate is achieved at a distance of 1 dB from the capacity
of the AWGN channel. The distance to the constrained constellation limit is
0.72 dB.

1.4.4 Overview of results

To illustrate the performance of these results and compare with our results,
we have plotted the capacity of the AWGN channel in Figure 1.4. The figure
also shows the constrained constellation capacity of a 256-PAM constellation.
Furthermore, we have indicated the SNR and rate points which are achieved
by state-of-the-art schemes presented in literature and the schemes we present.
The block length is denoted by N and it is equal to the number of channel input
symbols. Furthermore, the SNR and rate points are defined as the SNR where
the scheme achieves a bit-error rate < 10−5.

The figure shows the performance of the non-binary LDPC codes from [12]
and a trellis shaped code from [10]. Furthermore, in Chapter 2 we investi-
gate modulation by superposition combined with multilevel coding. The fig-
ure shows the performance of two schemes which are designed in Chapter 2.
In Chapter 3 we introduce shaped PAM-LDPC codes and the figure shows the
performance of these codes.

At a rate around 5 bit/use, we present two schemes which operate very
close to the capacity of the AWGN channel. We have not found any schemes
in literature transmitting at such a high spectral efficiency. At a rate around
3 bit/use and 4 bit/use, the performance of the shaped PAM-LDPC codes
is comparable to the performance of the non-binary LDPC codes. However,
PAM-LDPC codes are based on binary LDPC codes and in general decoding
complexity for these codes will be less. The schemes we present for a transmis-
sion at a rate around 2 bit/use perform slightly better than the trellis shaped
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Figure 1.4: Coded modulation schemes for the AWGN channel.

code which is presented in [10]. We conclude that the schemes we present per-
form very close to the capacity of the AWGN channel.
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10 Chapter 1. Introduction

1.5 Outline

The outline of this thesis is as follows. In Chapter 2 we investigate the use of
superposition modulation for the design of signal constellations. In this case the
modulation map is simply a scaled addition over the real numbers. We show
that signal constellations can be designed which have a constrained capacity
within 0.1 dB of the capacity of the AWGN channel for target rates between
2 bit/use to 5 bit/use. Furthermore, we show that the use of superposition
modulation transforms the coding problem for the AWGN channel into a cod-
ing problem for a set of binary memoryless symmetric channels for which pow-
erful binary codes can be designed.

The disadvantage of the approach followed in Chapter 2 is that in the con-
text of Figure 1.2 the required value of d becomes high for higher spectral effi-
ciencies. In Chapter 3 we show how to prevent this by merging bit-interleaved
coded-modulation and multilevel coding. With this method we are able to
achieve a good performance for a relatively small value of d (3 or 4) for any
spectral efficiency.

The use of superposition modulation results in a set of equivalent sym-
metric binary channels. In Chapter 4 we investigate the concept of channel
symmetry in more detail. We show how channel symmetry is related to the
properties of the output space of the channel. As a application we show how
the modulation map Φ can be chosen such that the equivalent binary channels
are symmetric. This leads to a rich family of modulation maps suitable for
coded modulation on the AWGN channel. The work presented in Chapter 4
is not to be seen as a completed piece of research. However, we feel that it is
sufficiently mature to be included. An argument in favor for this is that the
partial results we provide lead to an interesting application.
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Chapter 2

Superposition Modulation on
the Gaussian Channel

2.1 Introduction

In this chapter , we consider power- and bandwidth efficient communication
over the discrete-time memoryless additive white Gaussian noise (AWGN)
channel. The goal is to achieve reliable communication at a rate close to the
capacity of the channel for high spectral efficiencies where the use of binary
signaling incurs a large loss in rate. In this case one has to resort to so-called
signal shaping methods to get close to capacity. A restriction to signal constella-
tions with a uniform spacing and an equiprobable selection of the constellation
symbols leads to a maximum loss of 1.53 dB compared to a Gaussian channel
input [14]. A so-called shaping gain is available.

Power- and bandwidth efficient communication with signal shaping has
been studied by several authors. A comprehensive overview of modulation
and coding for general Gaussian channels can be found in [14]. Most methods
are either based on non-equiprobable signaling and non-uniform signaling or
multi-dimensional signal constellations. The former approach considers the
problem at hand from a modulation point of view and the latter approach from
a coding point of view.

The use of multi-dimensional signal constellations is closely related to the
concept of lattice codes [15], [16], [17]. An essential observation is that coding
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12 Chapter 2. Superposition Modulation on the Gaussian Channel

and shaping gain can be separated when the dimensionality of the constella-
tion tends to infinity. Recent research on lattice codes shows that the capacity
of the AWGN channel can be achieved with lattice codes under suboptimal lat-
tice decoding [18], [19]. However, from a complexity point of view suboptimal
lattice decoding is only feasible for relatively small lattices.

In non-equiprobable signaling, methods are devised to generate channel in-
puts with a non-uniform probability distribution [20], [21]. The main issue here
is how to choose the distribution in the first place and how to generate channel
inputs from this distribution keeping in mind that the source usually provides
uniformly distributed bits. In non-uniform signaling the channel inputs have
a non-uniform spacing [13] and design issues here are how to choose the ac-
tual spacing. Methods to design these signal constellations are proposed in
[13]. These methods can be combined with binary error-correcting codes. Two
well-known schemes are bit-interleaved coded-modulation [9] and multilevel
coding [8]. These schemes have the potential to provide reliable communica-
tion with feasible encoding and decoding complexity.

Some recent research has focused on the combination of powerful binary
error-correcting codes and signaling methods. In [7], [10] low-density parity-
check (LDPC) codes are combined with conventional pulse-amplitude modu-
lation (PAM) constellations in a multilevel coding (MLC) context. The analy-
sis and design of LDPC codes is simplified for binary-input output-symmetric
(BIOS) channels. However, the use of MLC does not necessarily lead to sym-
metric channels at the bit level. The analysis and design of LDPC codes is
more involved in this case. Moreover, in [12] the main motivation for using
non-binary LDPC codes is that for power- and bandwidth efficient modula-
tion the channels at the bit level are not symmetric. However, analysis and
design of non-binary LDPC codes is more complex and decoding complexity
is increased.

In this chapter we investigate the use of a conceptually very simple modu-
lation method which allows one to generate signal constellations with a non-
uniform spacing and a non-equiprobable distribution on the constellation sym-
bols. The method has its roots in the work of Imai et al. on multilevel coding
[8]. The method is easily combined with binary error-correcting codes to pro-
vide reliable communication. We show that if one uses a MLC approach with
multistage decoding, the original problem of achieving capacity on the AWGN
channel reduces to achieving capacity on a set of binary-input output-symmetric
channels. Hence it is more or less straightforward to analyze and design binary
LDPC codes to get close to the capacity of the AWGN channel once a proper
signal constellation is designed. We show that one can get very close to the ca-
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2.2 Modulation and Coding 13

pacity of the AWGN channel for high signal-to-noise ratios with binary LDPC
codes.

The outline of this chapter is as follows. In Section 2.2 we introduce the
modulation method and show how to combine it with binary block codes. In
Section 2.3 we consider the design of signal constellations and present a few de-
sign examples of signal constellations for a high spectral efficiency. In Section
2.4 we consider the use of binary LDPC codes on the binary channels defined
by the signal constellations. Moreover, in this section we derive some prop-
erties of these binary channels which are relevant for the analysis and design
of LDPC codes. In Section 2.5, we present design examples and simulation
results. We end with conclusions in Section 2.6.

2.2 Modulation and Coding

We consider power and bandwidth efficient communication over the AWGN
channel which is defined by

Y = X + N, (2.1)

where the channel input X is disturbed by the random variable N which has a
zero-mean Gaussian distribution with variance σ2

fN(n) =
1√

2πσ2
e−

n2

2σ2 . (2.2)

The energy expended per channel use Es is equal to the mathematical expecta-
tion of X2

Es = E
[

X2
]

, (2.3)

where the mathematical expectation is denoted by E[·]. The capacity of the
AWGN channel is achieved for a Gaussian distribution on X and it is given by
the well-known formula

C =
1
2

log2 (1 + SNR) bit/use, (2.4)

where SNR is the signal-to-noise ratio and is defined as

SNR =
Es

σ2 . (2.5)

In practical communication systems we transmit a symbol Z from a dis-
crete alphabet S . The set S is called the signal constellation and its elements
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14 Chapter 2. Superposition Modulation on the Gaussian Channel

are constellation symbols. Moreover, we define a probability measure PS on the
elements of S , where PS(z) denotes the probability that Z is equal to z

PS(z) = Pr[Z = z] for z ∈ S . (2.6)

Now, the channel output Y is given by

Y = Z + N. (2.7)

The achievable rate is upper-bounded by the so-called constrained constellation
capacity I(Z; Y), which is the mutual information between Z and Y. The goal
is to design S and PS in such a way that I(Z; Y) is as close to C as possible.
However, once we have designed S and PS , it is not straightforward to come
up with a method of error-control coding which results in this signal constella-
tion with the corresponding probability distribution and has feasible encoding
and decoding algorithms.

On the other hand, it is not difficult to generate a near-Gaussian distribution
which comes close to the optimal input distribution for the AWGN channel.
One way to generate a Gaussian distribution is by adding independent and
identically-distributed (i.i.d.) random variables. Let X1, . . . , Xd denote a se-
quence of uniform i.i.d. random bit variables taking values in {−1, 1}1. Next,
we define a random variable Z as

Z =
1√
d

d

∑
i=1

Xi. (2.8)

The distribution of Z is binomial and when we let d → ∞ the distribution
of Z converges to the Gaussian distribution by the central limit theorem. We
investigate the use of this method to generate signal constellations for power-
and bandwidth efficient communication over the AWGN channel.

The idea of superimposing bits is not new and is sometimes refered to as
superposition coding. In [8] multilevel coding is introduced where the output of
d independent binary encoders is summed. Moreover, in [11] and [22] the au-
thors show that for d = 2 and d = 3 and low spectral efficiencies, the method
can be combined with turbo codes leading to a low bit-error rate within 1.4 dB
of the capacity of the AWGN channel. We elaborate on this idea and show that
for a whole range of spectral efficiencies we can design signal constellations

1Throughout this chapter binary random variables will take values in {−1, 1}. Algebraic oper-
ations on these variables are the algebraic operations defined on the real numbers.
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2.2 Modulation and Coding 15

with a constrained capacity close to the capacity of the AWGN channel. Fur-
thermore, we show that superposition coding reduces the problem of achiev-
ing the capacity on the AWGN channel to achieving the capacity on a set of
equivalent binary-input output-symmetric channels. For these binary channels
LDPC codes can be designed such that an overall near-capacity performance is
achieved.

2.2.1 Modulation by Superposition

Let X1, . . . , Xd be a tuple of independent random bit variables where each bit
takes values in {−1, 1}. The distribution of Xi for i = 1, . . . , d is defined by
PXi(xi)

PXi(xi) = Pr[Xi = xi]. (2.9)

A channel input Z is generated by a scaled addition of these random bit vari-
ables

Z =
d

∑
i=1

αiXi, (2.10)

where the αi are constants taken from R. The αi define the signal constellation
S

S =

{

z

∣

∣

∣

∣

∣

z =
d

∑
i=1

αixi, x1 ∈ {−1, 1}, . . . , xd ∈ {−1, 1}
}

. (2.11)

The probability that a constellation symbol z ∈ S is selected is given by

PS(z) = ∑
x1

. . . ∑
xd

(

d

∏
i=1

PXi(xi)

)

�

{z}

(

d

∑
i=1

αixi

)

, (2.12)

where
�

{z} is the set indicator function which for a set A is defined as

�

A(x) =

{

1 x ∈ A
0 x /∈ A.

(2.13)

The distribution of X1, . . . , Xd induces a distribution on the elements of S .
In what follows we will choose the distribution of X1, . . . , Xd as the uniform
distribution. The reason for this is that in the end we are interested in using
binary linear codes for which the ensemble is defined by a uniform distribution
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16 Chapter 2. Superposition Modulation on the Gaussian Channel

on the codeword symbols. We generate a channel input Z by a scaled addition
of d uniform i.i.d. random bit variables

Z =
d

∑
i=1

αiXi. (2.14)

The signal constellation is defined by (2.11) and the distribution of the constel-
lation symbols which is defined by (2.12) reduces to

PS(z) =
1
2d ∑

x1

. . . ∑
xd

�

{z}

(

d

∑
i=1

αixi

)

. (2.15)

The αi determine the constellation geometry, the distribution of the constella-
tion symbols and the mapping from bits to constellation symbols. The map-
ping from bits to constellation symbols can be injective or not. In case the
map is not injective PS(z) can be a non-uniform distribution. In Section 2.3 we
discuss the properties of the signal constellations generated by (2.14) in more
detail. Next, we turn to error-control coding.

2.2.2 Multilevel Encoding with Multistage Decoding

To combine modulation by superposition with error-control coding, we con-
sider the mutual information between Y and X1, . . . , Xd which we can express
as

I (Y; (X1, . . . , Xd)) = I(Y; X1) + I(Y; X2|X1) + . . . + I(Y; Xd|X1, . . . , Xd−1).
(2.16)

This is the chain rule of mutual information. This identity suggests a mul-
tilevel encoding procedure with multistage decoding at the receiver [8], [23].
Consider a set of d binary error-correcting codes, where we denote the code
at level i by Ci. We assume that the codeword bits are represented on the real
numbers by 1 and −1. The rate of Ci is denoted by ri and the length of each
code is n. Now, let xi ∈ Ci and denote its kth coordinate by xi,k. A channel
input at time k is generated by a scaled addition of the kth coordinate of the
codewords

zk =
d

∑
i=1

αixi,k. (2.17)
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Bit source Serial-to-parallel

Encoder C1

Encoder Cd

∑
d
i=1 αixi

AWGNDecoder C1

Decoder C2

Decoder Cd

x̂1

x̂2

x̂d

x1

xd z

y

Figure 2.1: Block diagram of the modulation method with multilevel coding
and multistage decoding.

Hence, the channel input word z of length n is generated by a scaled component-
wise addition of the codewords

z =
d

∑
i=1

αixi. (2.18)

At the receiver we employ a multistage decoding procedure which is inspired
by (2.16). We decode each of the codes in a sequential order and without loss
of generality we assume that the decoding sequence is C1, C2, . . . , Cd. C1 is
decoded first and the decision is passed on the next decoder which decodes
C2. This procedure continues up to the last level where Cd is decoded2. An
overview of this system is shown in Figure 2.1.

We assume that codewords from C1 to Cd are independently selected with
equal probability and each code is such that the marginal distribution of the
codeword bits is uniform. The latter will be the case if we use codes from a
suitable ensemble of binary random codes or binary linear block codes. In this

2An alternative approach is to consider joint decoding of C1 to Cd. However, we do not consider
this approach in this chapter .
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18 Chapter 2. Superposition Modulation on the Gaussian Channel

case the signal constellation is generated by the superposition of i.i.d. uniform
random bit variables as in (2.14).

The use of multilevel coding with multistage decoding reduces the problem
of achieving the left-handside of (2.16) to achieving each of the terms of the
right-handside of (2.16) in a sequential fashion with binary codes. In [23] and
[24] it is shown that multilevel coding with multistage decoding is optimal in
the sense that I((X1, . . . , Xd); Y) can be achieved if the code rates are chosen
properly.

2.2.3 Equivalent Binary Channels

When we use multilevel coding with binary codes and multistage decoding at
the receiver, the coding problem for the original channel is transformed into a
coding problem for a set of equivalent binary channels. Consider the case that
we are decoding at level l. We assume that all previous levels are decoded cor-
rectly which implies that the values of X1, . . . , Xl−1 are known and we denote
their realizations by x1, . . . , xl−1. The channel for Xl takes the form

Y = c′l + αlXl +
d

∑
i=l+1

αiXi + N, (2.19)

where c′l is given by

c′l =
l−1

∑
i=1

αixi. (2.20)

Furthermore, Xl+1, . . . , Xd are unknown and considered to be noise. The addi-
tive noise for Xl is defined by

N′
l =

d

∑
i=l+1

αiXi + N, (2.21)

and the density of N ′
l is given by

fN′
l
(n) =

1

2d−l
√

2πσ2 ∑
xl+1

. . . ∑
xd

exp
(

− (n− αl+1xl+1 − . . .− αdxd)
2

2σ2

)

. (2.22)

For future reference we note that this density has the following symmetry

fN′
l
(n) = fN′

l
(−n). (2.23)
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2.2 Modulation and Coding 19

Now, we can write the equivalent channel for Xl as

Y = αlXl + c′l + N′
l . (2.24)

This equivalent binary channel is defined by the channel transition density
fY|Xl,...,X1

fY|Xl ,...,X1
(y|xl, . . . , x1) = fN′

l
(y− αlxl − c′l). (2.25)

For the purpose of error-control coding we are interested in the achievable rate
I(Y; Xl|Xl−1, . . . , X1) on this equivalent channel. I(Y; Xl |Xl−1, . . . , X1) is the
average mutual information between Y and Xl given X1, . . . , Xl−1. However,
when decoding at level l the values of X1 . . . , Xl−1 are assumed to be known
and the achievable rate is equal to

I(Y; Xl|Xl−1 = xl−1, . . . , X1 = x1).

A convenient consequence of the use of (2.14) is that this quantity is indepen-
dent of the realization of X1 . . . , Xl−1 as the following theorem shows

Theorem 1 Let channel inputs be generated by (2.14) where X1, . . . , Xd are uniform
i.i.d. random bit variables. I(Y; Xl|Xl−1 = xl−1, . . . , X1 = x1) is independent of the
realization of X1, . . . , Xl−1. Hence

I(Y; Xl |Xl−1, . . . , X1) = I(Y; Xl|Xl−1 = xl−1, . . . , X1 = x1), (2.26)

and the capacity Cl of the equivalent binary channel at level l is given by

Cl =
∫ ∞

−∞
fN′

l
(y + αl) log2

2 fN′
l
(y + αl)

fN′
l
(y + αl) + fN′

l
(y− αl)

dy. (2.27)

Proof 1 First note that we can write

I(Y; Xl|Xl−1 = xl−1, . . . , X1 = x1) = ∑
xl

1
2

I(Y; Xl = xl|Xl−1 = xl, . . . , X1 = x1),

(2.28)
where

I(Y; Xl = xl|Xl−1 = xl−1, . . . , X1 = x1)

=
∫ ∞

−∞
fY|Xl ,...,X1

(y|xl, . . . , x1) · log2
2 fY|Xl,...,X1

(y|xl, . . . , x1)

∑x′∈{−1,1} fY|Xl,...,X1
(y|x′, xl−1, . . . , x1)

dy

=
∫ ∞

−∞
fN′

l
(y− αlxl − c′l) · log2

2 fN′
l
(y− αlxl − c′l)

fN′
l
(y− αl − c′l) + fN′

l
(y + αl − c′l)

dy. (2.29)
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20 Chapter 2. Superposition Modulation on the Gaussian Channel

The right-handside of this equation does not depend on c′l since we integrate over R.
From this we conclude that the left-handside of (2.28) does not depend on the realization
of X1, . . . , Xl−1. Moreover, we can make use of the symmetry of fN′

l
to show that the

value of (2.28) does not depend on xl. Equation (2.27) follows when we take xl = −1
and c′l = 0.

By the chain rule of mutual information the constrained constellation ca-
pacity I(Y; Z) is given by

I(Y; Z) = I(Y; (X1, . . . , Xd)) =
d

∑
i=1

Ci. (2.30)

As mentioned before, multilevel coding with multistage decoding allows us to
achieve I((X1, . . . , Xd); Y). Now it it clear that we require that the code rates
satisfy ri ≤ Ci.

The use of superposition coding with multilevel encoding at the transmit-
ter and multistage decoding at the receiver allows one to treat modulation and
coding separately. First, a signal constellation can be designed for which the
constrained constellation capacity is close to the capacity of the AWGN chan-
nel. Second, binary error-correcting codes can be designed for the set of equiv-
alent binary channels defined by the constellation. We continue along this path
in this chapter . First, we describe several families of signal constellations in
Section 2.3 and show that for the AWGN channel constellations can be de-
signed which have a constrained capacity close to the capacity of the AWGN
channel. Second, we consider the design of binary LDPC codes for the equiva-
lent binary channels in Section 2.4.

2.3 Signal Constellations

In this section we consider the properties of signal constellations generated by
the superposition of uniform i.i.d. random bit variables and identify several
families of constellations. We consider conventional pulse-amplitude modu-
lation (PAM) signal constellations, binomial signal constellations and numer-
ically optimized signal constellations. Furthermore, we compare the perfor-
mance of different signal constellations.
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2.3 Signal Constellations 21

2.3.1 Signal Constellation Properties

We use a signal constellation S to communicate over the AWGN channel

Y = Z + N, (2.31)

where Z takes a value z ∈ S with probability PS(z). There are several per-
formance measures on which signal constellations can be compared. These
include uncoded symbol error rate, Euclidian distance profile and peak-to-
average power ratio. We are interested in achieving capacity on the AWGN
channel and we will only be concerned with the information theoretical limits.
Thus we compare signal constellations on their constrained constellation ca-
pacity. For this purpose recall that the capacity of the AWGN channel is given
by

C =
1
2

log2(1 + SNR). (2.32)

Let R denote the constrained constellation capacity which is achieved at some
SNR. Next, denote the SNR at which the capacity of the AWGN channel is
equal to R by SNRAWGN

SNRAWGN = 22R − 1. (2.33)

This motivates the definition of the normalized SNR [14] as

SNRnorm =
SNR

SNRAWGN
=

SNR
22R − 1

. (2.34)

The value of SNRnorm for which a constrained constellation capacity R is achieved
signifies how far the constellation is operating from the capacity of the AWGN
channel. The baseline performance is SNRnorm = 0 [dB], which is the required
SNRnorm for a Gaussian channel input to achieve any rate on the AWGN chan-
nel. We use this benchmark to compare different signal constellations.

2.3.2 Properties of Constellations generated by Superposition

Recall from Section 2.2 that a channel input Z is generated by a scaled addition
of uniform i.i.d. random bit variables

Z =
d

∑
i=1

αiXi. (2.35)
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22 Chapter 2. Superposition Modulation on the Gaussian Channel

The average energy expended per channel use Es can be expressed as

Es = E[Z2] = E





(

d

∑
i=1

αiXi

)2


 =
d

∑
i=1

α2
i . (2.36)

The signal constellation S is given by (2.11) and the probability with which the
constellation symbols are selected by (2.15). To compute the elements of the
signal constellation and the probability with which the constellation symbols
are generated in an efficient way, we consider the generating function of Z. For
this, note that the generating function of αiXi is given by

gi(x) =
1
2

xαi +
1
2

x−αi , (2.37)

which allows us to express the generating function of Z as

gZ(x) =
d

∏
i=1

(
1
2

xαi +
1
2

x−αi). (2.38)

The righthand side of this equation can be expanded as

gZ(x) =
2d

∑
i=1

pixti . (2.39)

Now, the signal constellation S is given by

S =
{

ti|i = 1, . . . , 2d
}

. (2.40)

The probability assignment on the constellation symbols can be obtained by
collecting terms in (2.39). PS(z) is equal to the coefficient of the term of power
z.

2.3.3 Families of Signal Constellations

PAM Signal Constellations

A signal constellation with a uniform spacing and a uniform distribution on
the constellation symbols is generated by taking the αi as consecutive powers
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2.3 Signal Constellations 23

of two. A constellation symbol Z from an M-PAM constellation with M = 2d

constellation symbols is generated by

Z =
d

∑
i=1

2i−1Xi. (2.41)

The signal constellation is given by

S =
{

−2d + 2i− 1|i = 1, 2, 3, . . . , 2d
}

, (2.42)

and the probability distribution is uniform

PS(z) =
1
2d for z ∈ S . (2.43)

The average energy expended per channel use for this constellation is

Es =
22d − 1

3
. (2.44)

The constrained constellation capacity of the M-PAM constellations is plotted
in Figure 2.2 for d = 2 to d = 8. For low rates there is only a small loss with
respect to the capacity of the AWGN channel. However, for higher rates the
loss is substantial. At a rate of 3 bit/use a shaping gain of over 1 dB is available.
Note that the capacity curves all converge to a limit since the constellations
have a finite number of constellation symbols.

Binomial Signal Constellations

Signal constellations with a uniform spacing and a binomial distribution are
generated by

Z =
d

∑
i=1

Xi. (2.45)

The signal constellation is given by

S = {−d + 2(i− 1)|i = 1, 2, 3, . . . , d + 1} . (2.46)

The map from bits to constellations symbols is not injective and the distribution
of the constellation symbols is binomial

PS(z) =

(

d
1
2 (z + d)

)

2−d for z ∈ S . (2.47)
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Figure 2.2: The constrained capacity limits of the M-PAM constellations.

The size of the signal constellation is |S| = d + 1 and the average energy per
channel use is given by

Es = d. (2.48)

The constrained capacity curves of the binomial signal constellations for d =
2 to d = 10 are shown in Figure 2.3. The figure also shows the 16-PAM
constrained capacity limit. The binomial signal constellations have their con-
strained capacity limit very close to the AWGN limit. At least where the con-
strained capacity is not too close to the finite constellation entropy. For the
signal constellation with d = 10 a rate of 2 bit/use is achieved at SNRnorm =
0.027 dB. This constellation has 11 constellations symbols and compared to the
16-PAM constellation, we achieve a shaping gain of 0.74 dB.

A drawback of the binomial signal constellations is that they are only useful
for low to moderate rates. The reason for this is that the supported rate grows
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Figure 2.3: The constrained capacity limits of the binomial constellations.

only logarithmically with d and a high number of levels is required for multi-
level coding with multistage decoding. To see this note that for the binomial
signal constellations, the size of the signal constellation is equal to d + 1. Hence
the entropy of the signal constellation is upper bounded by log2(d + 1). Thus
to transmit at a rate of R bit/use, we should at least have d ≥ 2R − 1.

Finally, note that these signal constellations are useless for uncoded trans-
mission, because the map from bits to constellation symbols is not injective. Re-
gardless of the SNR, the bit-error rate will always be lower bounded by a fixed
constant. However, when we combine modulation with error-control coding
the binomial distribution provides a shaping gain which saves transmission
power.
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Numerically Optimized Signal Constellations

A major advantage of the use of superposition to generate a signal constellation
is that relatively few degrees of freedom determine the constellation geome-
try and mapping from bits to constellation symbols. This makes a numerical
optimization feasible. The objective is to find a set of αi defining a signal con-
stellation with a constrained constellation capacity close to the capacity of the
AWGN channel. We can formulate this optimization problem as follows

max I(Y; Z), where Z =
d

∑
i=1

αiXi

subject to
d

∑
i=1

α2
i = Es, (2.49)

where we have only incorporated a power constraint, but other constraints,
such a maximum peak-to-average power ratio, can be included as well.

To illustrate the potential of numerical optimization we design several sig-
nal constellations for target rates in the range from 2 bit/use to 5 bit/use for
several values of d. Note that to transmit at a rate of R bit/use, we require at
least d ≥ R. The optimization is carried out as follows. First, we determine the
SNR for which the capacity of the AWGN channel is equal to the target rate.
Second, the power constraint is set accordingly and (2.49) is solved.

For the actual optimization, we have experimented with several optimiza-
tion strategies. One strategy giving good results in acceptable optimization
time is the use of differential evolution [25] and we limit ourselves to the re-
sults obtained by this optimizer. Differential evolution is a global optimization
strategy based on hill-climbing and a genetic algorithm and is sometimes used
in the design of error-correcting codes [26], [27].

The optimization results are shown in Table 2.1. The table gives for each
rate R the SNR for which the capacity of the AWGN channel is equal to R bit/use.
Furthermore, for several values of d the optimized αi are given with the result-
ing constrained constellation capacity I(Y; Z). Note that I(Y; Z) is independent
of the order in which the αi are given in the table. However, the capacities of
the binary equivalent channels depend on the order in which the levels are de-
coded. Changing the order of the αi changes the capacities of the equivalent
binary channels. In Table 2.1 the αi are given in ascending order. Finally, the
table gives the value of SNRnorm where a rate of R bit/use is achieved. This
value signifies the gap to capacity of the signal constellation.
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R 2.0 bit/use 3.0 bit/use
SNR 11.76 17.99

d 3 4 5 6 4 5 6 7
α1 0.3488 0.2968 0.2632 0.2373 0.2090 0.2118 0.1978 0.1918
α2 0.5671 0.4165 0.3353 0.2901 0.3738 0.3316 0.2767 0.2418
α3 0.7461 0.5597 0.4827 0.4636 0.4928 0.4280 0.3752 0.3386
α4 0.6520 0.5410 0.4636 0.7575 0.5052 0.4212 0.3697
α5 0.5410 0.4636 0.6378 0.5003 0.4179
α6 0.4636 0.5620 0.4706
α7 0.5074
|S| 8 16 24 20 16 32 64 128

I(Y; Z) 1.930 1.972 1.987 1.993 2.905 2.958 2.980 2.990
SNRnorm 0.50 0.19 0.09 0.05 0.64 0.27 0.13 0.06

R 4.0 bit/use 5.0 bit/use
SNR 24.07 30.10

d 5 6 7 8 6 7 8 9
α1 0.1571 0.1313 0.1175 0.1160 0.0910 0.0700 0.0634 0.0581
α2 0.2688 0.2345 0.2123 0.1995 0.1716 0.1356 0.1498 0.1099
α3 0.3473 0.3046 0.2737 0.2490 0.2223 0.2558 0.2591 0.2075
α4 0.5675 0.4624 0.3999 0.3080 0.3513 0.2923 0.2989 0.2380
α5 0.6785 0.5146 0.4424 0.3801 0.5491 0.4761 0.3475 0.3423
α6 0.5970 0.4726 0.4189 0.6986 0.5208 0.3986 0.3757
α7 0.5360 0.4639 0.5727 0.5107 0.4187
α8 0.5046 0.5260 0.4609
α9 0.4887
|S| 32 64 128 256 64 128 256 512

I(Y; Z) 3.895 3.956 3.978 3.989 4.887 4.950 4.970 4.988
SNRnorm 0.73 0.28 0.13 0.07 0.77 0.32 0.18 0.07

Table 2.1: Parameters of the designed signal constellations.

We observe that for the target rates given in the table, the designed signal
constellations achieve a considerable shaping gain. All constellations given in
the table outperform conventional PAM constellations. At the lowest R in the
table, a 256-PAM constellation requires an SNRnorm of 0.74 dB to achieve a rate
of 2 bit/use. The constellation for R = 2 with d = 3 achieves a rate of 2 bit/use
at an SNRnorm of 0.50 dB. However, this constellation has only 8 constellation
symbols instead of 256. For higher rates and higher values of d the achievable
shaping gain is more profound.



i

i

“thesis” — 2008/6/12 — 20:57 — page 28 — #38
i

i

i

i

i

i

28 Chapter 2. Superposition Modulation on the Gaussian Channel

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

R
[b

it
/u

se
]

SNRnorm [dB]

256-PAM

R = 2, d = 6

R = 3, d = 7

R = 4, d = 8

R = 5, d = 9

Figure 2.4: The constrained capacity limits of the numerically optimized con-
stellations.

A plot of SNRnorm versus the rate of the signal constellations is given in
Figure 2.4. The plot shows for each target rate the constrained capacity curve
for the signal constellation with the highest value of d. For each of the target
rates we have designed a signal constellation which achieves the target rate
within 0.1 dB of the capacity of the AWGN channel. By increasing the value of
d one can even get closer to the capacity of the AWGN channel.

Two of the constellations defined by Table 2.1 we discuss in greater de-
tail. The parameters of these constellations are printed in bold in the table and
these constellations serve as an example in the next section when we consider
error-control coding. We refer to the constellation for 2 bit/use and 5 bit/use
as constellation A and constellation B, respectively. Constellation A has 20
constellation symbols and a non-uniform spacing of the constellation symbols.
Moreover, the distribution of the constellation symbols is non-uniform. It is in-
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Figure 2.5: Signal constellation A.

teresting to see that the last four coefficients converge to the same value. This
implies that X3 to X6 generate a binomial distribution. To give an impression
of the geometry of the constellation, the resulting quadrature constellation is
shown in Figure 2.5. This quadrature constellation is generated by using each
dimension independently. The size of each square is proportional to the prob-
ability with which the constellation symbols are selected. The figure clearly
shows the non-uniform spacing and non-uniform distribution of the constella-
tion symbols. Figure 2.6 shows the constrained capacity limit of the constella-
tion. The constrained capacity curve is close to the AWGN capacity curve for
a wide range of SNRs. At SNR = 11.76 dB the constrained capacity is 1.993
which is very close to the capacity of the AWGN channel. In terms of dB the
distance to the capacity of the AWGN channel is only 0.05 dB. Furthermore, a
32-PAM constellation requires SNR = 12.51 dB to achieve a constrained capac-
ity of 2 bit/use while constellation A requires SNR = 11.81 dB to achieve the
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Figure 2.6: The capacity limit of constellation A.

same rate. Compared to a 32-PAM constellation, we achieve a shaping gain of
0.7 dB. The figure also shows the capacities of the equivalent binary channels
whose sum is equal to the total capacity.

Constellation B has 256 constellation symbols and the spacing of the sym-
bols is non-uniform. Figure 2.7 shows the quadrature constellation and unlike
constellation A, the mapping from bits to constellation symbols is one-to-one
which results in a uniform distribution over the constellation symbols. Fig-
ure 2.8 shows the constrained capacity of the signal constellation together with
the constrained capacity of a 256-PAM signal constellation. We observe that at
SNR = 30.10 dB the constrained capacity of the constellation is 4.97 bit/use.
In terms of SNR the distance to the capacity of the AWGN channel is 0.18 dB.
Compared to 256-PAM constellation we achieve a shaping gain of 1.22 dB.
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Figure 2.7: Signal constellation B.

2.4 Error-control Coding with Binary LDPC Codes

In this section we consider the use of binary error-correcting codes on the set of
equivalent binary channels defined by the signal constellations. Constellation
A and constellation B defined in the previous section will serve as a running ex-
ample in this section and the next section. From the chain rule of mutual infor-
mation it follows that the constrained constellation capacity can be achieved if
we achieve capacity on each of the equivalent binary channels. When we gen-
erate channel inputs by (2.14) each of the equivalent binary channels is defined
by (2.24). In the previous sections the capacity of this equivalent binary channel
is denoted by Cl and achieved for a uniform distribution on Xl . Ensembles of
binary linear block codes have a uniform distribution on the codeword bits and
if the rate of the code satisfies rl ≤ Cl , they are capable of achieving Cl under
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Figure 2.8: The capacity limit of constellation B.

maximum likelihood decoding [28]. However, maximum likelihood decoding
is not feasible from a practical point of view.

Binary sparse-graph codes such as turbo codes [6] and LDPC codes [1] ad-
mit low-complexity decoding algorithms. In [26] it is shown that for several
memoryless binary-input output-symmetric channels, LDPC codes can be de-
signed which perform very close to channel capacity. We show that this also
holds for the equivalent binary channels defined by the signal constellations.

In this section we start with the derivation of some additional properties
of the equivalent binary channels which are relevant for the analysis and de-
sign of LDPC codes. We show that the equivalent binary channels are in fact
output-symmetric channels. Furthermore, LDPC codes are usually decoded
by message-passing algorithms where the messages represent log-likelihood
ratios (LLRs). From a practical point of view the computation of LLRs is im-
portant and we show how to accomplish this in an efficient manner for signal
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constellations generated by superposition. Finally, we discuss the design of
LDPC codes for the equivalent binary channels.

2.4.1 Equivalent Binary Channels

Recall from Section 2.2 that with superposition coding and multistage decod-
ing at the receiver, the equivalent binary channel at level l is given by

Y = αlXl + c′l + N′
l , (2.50)

where c′l is defined as

c′l =
l−1

∑
i=1

αiXi, (2.51)

and N′
l as

N′
l =

d

∑
i=l+1

αiXi + N. (2.52)

Furthermore, the density of N ′
l is given by

fN′
l
(n) =

1

2d−l
√

2πσ2 ∑
xl+1

. . . ∑
xd

exp
(

− (n− αl+1xl+1 − . . .− αdxd)
2

2σ2

)

. (2.53)

A sufficient statistic to make a decision on Xl is the log-likelihood ratio. Let y
denote a realization of Y. The LLR for Xl is defined as

Ll(y) = log
fY|Xl ,...,X1

(y|1, xl−1, . . . , x1)

fY|Xl ,...,X1
(y| − 1, xl−1, . . . , x1)

= log
fN′

l
(y− αl − c′l)

fN′
l
(y + αl − c′l)

. (2.54)

We can view Ll(y) as a random variable by noting that it is a function of the
channel output Y which is a function of the random variables X1, . . . , Xl and
N′

l . As a random variable we denote Ll(y) by Ll(Y)

Lemma 2 Ll(Y) is independent of the realization of X1, . . . , Xl−1.

Proof 2 First, note that the realization of X1, . . . , Xl−1 is summarized in the value of
c′l. We can write Ll(Y) as

Ll(Y) = log
fY|Xl ,...,X1

(Y|1, xl−1, . . . , x1)

fY|Xl ,...,X1
(Y| − 1, xl−1, . . . , x1)

= log
fN′

l
(Y − αl − c′l)

fN′
l
(Y + αl − c′l)

= log
fN′

l
(αlXl − αl + N′

l )

fN′
l
(αlXl + αl + N′

l )
, (2.55)
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which is only a function of Xl and N′
l .

In the analysis and design of binary LDPC codes the density of Ll(Y) condi-
tioned on the transmission of a 1 (Xl = 1) plays a crucial role. We assume that
this density exists and refer to such a density as an `-density. An `-density a(y)
is said to be symmetric if it satisfies [29]

a(y) = eya(−y). (2.56)

For a channel with a symmetric `-density the analysis and design of LDPC
codes is greatly simplified. The analysis of a message passing decoder satisfy-
ing some symmetry properties can be restricted to the all-ones codeword. In
case the channel is a BIOS channel, i.e.

fY|X(y|1) = fY|X(−y| − 1), (2.57)

the corresponding `-density is easily shown to be symmetric [29]. However,
the channel of (2.50) does not satisfy (2.57). Nevertheless, the `-density of the
channel defined by (2.50) is symmetric as the following theorem shows.

Theorem 3 The `-density of the binary channel defined by (2.50) is symmetric.

Proof 3 First, define
Y′ = Y − c′l = αlXl + N′

l , (2.58)

which effectively cancels the contribution of c′l. The LLR of Xl for this channel is
defined as

L′l(Y′) = log
fY′|Xl ,...,X1

(Y′|1, xl−1, . . . , x1)

fY′|Xl ,...,X1
(Y′| − 1, xl−1, . . . , x1)

= log
fN′

l
(Y′ − αl)

fN′
l
(Y + αl)

= log
fN′

l
(αlXl − αl + N′

l )

fN′
l
(αlXl + αl + N′

l )
= Ll(Y), (2.59)

which shows that Ll(Y) and L′l(Y) are equal and will have the same `-density. Next
note that the channel defined by (2.58) has a channel transition probability density
function which satisfies

fY|X(y|1) = fY|X(−y| − 1). (2.60)

The `-density corresponding to this channel is symmetric from which we conclude that
the `-density of the binary channel defined by (2.50) is symmetric.
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Several parameters of binary channels with a symmetric `-density are easily
expressed in terms of this `-density. For an overview we refer to [29]. The
capacity of the equivalent binary channel at level l in terms of its `-density
al(y) is given by

Cl = 1−
∫ ∞

−∞
al(y) log2

(

1 + e−y) dy. (2.61)

2.4.2 Computation of Log-likelihood Ratios

From a practical point of view an important issue is the actual computation
of LLRs. To derive a method to compute the LLRs for all levels efficiently, we
define a random variable Zl

Zl =
l

∑
i=1

αiXi, (2.62)

and we define Z0 as a constant random variable equal to 0 with probability 1.
Hence for l ≥ 1 we can write

Zl = Zl−1 + αlXl. (2.63)

The sequence of random variables Z0, Z1, . . . , Zd forms a Markov chain where
the state space can be identified with the signal constellation S . However, the
support of Zl is Sl

Sl =

{

l

∑
i=1

αixi

∣

∣

∣

∣

∣

x1 ∈ {−1, 1}, . . . , xl ∈ {−1, 1}
}

l ≥ 1, (2.64)

and by definition S0 = {0}. The possible transitions in state space are con-
veniently depicted by a trellis. Figure 2.9 shows the trellis for constellation A.
The trellis consists of d + 1 rows of nodes where we start counting rows from
0. The ith row consists of nodes corresponding to the elements of Si. Hence
the root node corresponds to S0 and the leave nodes to Sd. Each node at a par-
ticular row i can be identified by an element of Si and in Figure 2.9 we have
labeled the nodes accordingly. We refer to a node corresponding to z ∈ Si as
node z at row i. The edges between the nodes depict the possible state transi-
tions. A node zi at row i is connected to a node zi+1 at row i + 1 if and only if
zi+1 = zi ± αi+1.
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Figure 2.9: The trellis of constellation A.

We can use the trellis to compute the LLRs for each of the levels in multi-
stage decoding. For this purpose we carry out a backward pass of messages on
the trellis. Let β

(d)
z denote the initial message at the leave node corresponding

to constellation symbol z ∈ Sd. We initialize β
(d)
z as

β
(d)
z = fN(y− z), (2.65)

where y denotes the channel output and fN the Gaussian noise density with
variance σ2. At each node at row d of the trellis the corresponding β

(d)
z is sent

to its parent node at row d − 1. For a node z at row i we compute a message
β

(i)
z as

β
(i)
z = β

(i+1)
z+αi+1

+ β
(i+1)
z−αi+1

, (2.66)

where β
(i+1)
z+αi+1

and β
(i+1)
z−αi+1

are the messages sent by the descendants of node z.
In multistage decoding we assume decoding proceeds from X1 to Xd and we
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can compute the LLR for X1 as follows

L1 = log
∑x2

· · ·∑xd
fN(y− α1 −∑

d
i=2 αixi)

∑x2
· · ·∑xd

fN(y + α1 −∑
d
i=2 αixi)

= log
β

(1)
+α1

β
(1)
−α1

. (2.67)

Once a decision on X1 has been made the LLR for X2 can be computed. In case
X1 = 1 the LLR for X2 is computed as

L2 = log
β

(2)
+α1+α2

β
(2)
+α1−α2

, (2.68)

and in case X1 = −1 the LLR for X2 is computed as

L2 = log
β

(2)
−α1+α2

β
(2)
−α1−α2

. (2.69)

In general at level l we compute a LLR for Xl as

Ll = log
β

(l)
αl+c′l

β
(l)
−αl+c′l

. (2.70)

We only need to compute the values of the β
(l)
z messages at the beginning of

the multistage decoding process. When decoding a level we compute the LLRs
for the bits at that level by taking the logarithm of the two β(l) messages de-
pending on the decision at the previous levels. The complexity of computing
LLRs depends on the actual trellis and hence on the αi defining the signal con-
stellation. One can show that for a constellation of size |S|, one requires at least
|S| evaluations of fN , |S| − 2 additions, log2 |S| divisions and log2 |S| evalu-
ations of the natural logarithm. For constellations where (2.14) is one-to-one
this bound is tight.

Example 1 Consider the use of constellation A where transmission takes place at a
rate of 2 bit/use. To compute LLRs for X1 to X6 during multistage decoding, we require
at least 20 evaluations of fN , 24 additions, 6 divisions and 6 logarithms. In total we
require 56 operations and per actual data bit we require 28 operations. Compared to
the decoding of e.g. LDPC codes this is negligible.



i

i

“thesis” — 2008/6/12 — 20:57 — page 38 — #48
i

i

i

i

i

i

38 Chapter 2. Superposition Modulation on the Gaussian Channel

2.4.3 LDPC Codes

An LDPC code is a linear block code which is defined by a low-density parity-
check matrix H ∈ GF(2)(n−k)×n, where n is the length of a codeword and k
the number of source bits which is mapped to a codeword. Each codeword
x satisfies Hx = 0. An LDPC code is conveniently represented by a Tanner
graph [30]. The Tanner graph is a bipartite graph consisting of variable nodes
and check nodes. Each variable nodes represents a bit of a codeword and each
check node a row of the parity-check matrix. An ensemble of LDPC codes can
be defined by a degree distribution pair (λ, ρ) where λ(x) and ρ(x) define the
distribution of variable nodes and check nodes, respectively

λ(x) = ∑
i

λixi−1 ρ(x) = ∑
i

ρixi−1, (2.71)

where λi denotes the fraction of edges connected to variable nodes of degree i
and ρi denotes the fraction of edges connected to check nodes of degree i. In
terms of the degree distribution pair (λ, ρ) the design rate r of the code is given
by

r = 1−
∫ 1

0 ρ(x)dx
∫ 1

0 λ(x)dx
. (2.72)

The analysis and design of LDPC codes is greatly simplified for BIOS chan-
nels. In case the channel is a BIOS channel and the decoder satisfies certain
symmetry conditions, the performance of the decoder is independent of the
transmitted codeword. This implies that we can restrict the analysis of the de-
coding process to the case where the all-ones codeword is transmitted. In the
previous section we have shown that the equivalent binary channels resulting
from superposition coding with multistage decoding are BIOS channels.

2.4.4 Analysis and Design of LDPC Codes
The average performance of an ensemble of LDPC codes used on a channel
depends on the degree distribution pair (λ, ρ). Given a channel the goal of
LDPC design is to find a degree distribution pair which defines an LDPC en-
semble of rate r with an iterative decoding threshold close to the capacity of
the channel. Given a degree distribution pair the asymptotic performance of
the corresponding ensemble can be evaluated by density evolution [26]. To
design good degree distributions density evolution can be combined with a
global optimizer.
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Another approach to the design of LDPC codes is the use of EXIT charts
analysis combined with curve fitting techniques. EXIT chart analysis is basi-
cally a one-dimensional approximation to density evolution based on a Gaus-
sian approximation. The design problem can be cast into a curve fitting or
linear programming problem which is easy to solve. The actual performance
of the degree distribution pair designed with the approximation depends on
the channel. In many cases the approximation is good enough in the sense that
one can find degree distributions with a threshold close to the capacity of the
channel. The use of superposition coding with multistage decoding gives rise
to a whole family of BIOS channels. For many of these channels to use of EXIT
chart design alone does not give satisfying results.

As pointed out in [31] and [29], density evolution and EXIT chart design can
be combined as well. Initially EXIT chart design is used to find an initial degree
distribution pair. Next, the performance of this pair is evaluated by density
evolution. The results of density evolution are used to improve the EXIT chart
approximation and a new degree distribution pair is obtained with hopefully a
better performance. This approach allows to design good degree distributions
for the channels resulting from superposition coding with multistage decoding
as we will see later. First, we describe the design procedure in more detail.

Asymptotic Performance Evaluation with Density Evolution

In order to analyze the performance of an ensemble of LDPC codes on one of
the equivalent binary channels, we consider the transmission of the all-ones
codeword on this channel. In this case a negative realization of the LLR sig-
nifies a bit error. Let a0 denote the `-density of the LLRs corresponding to the
channel output. Density evolution is a recursive process where the evolution
of the densities of LLRs during the decoding process is tracked on a cycle-free
graph corresponding to a degree distribution pair (λ, ρ). Let fm denote the
density of messages sent by the variable to check nodes at iteration m. We can
describe density evolution as

fm = a0 ⊗ λ
(

Γ−1 (ρ (Γ ( fm−1)))
)

, (2.73)

where

λ( f ) = ∑
j

λj f⊗(j−1)

ρ( f ) = ∑
j

ρj f⊗(j−1), (2.74)
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and ⊗ denotes convolution and the operators Γ−1 and Γ are defined in [29].
Density evolution can be used to find the threshold of LDPC codes, and, more-
over, we can combine density evolution with an optimization strategy to de-
sign degree distributions with a threshold close to the capacity of the channel.
We will combine density evolution with EXIT chart design.

EXIT Chart Design with a Gaussian Approximation

EXIT charts are introduced in [32] and in [33] it is shown that EXIT chart tech-
niques are very useful for the design of LDPC codes. In EXIT chart analysis
we parameterize the `-densities which are observed during decoding by a sin-
gle parameter. Several choices are possible and this parameter can be taken as
e.g. mutual information, entropy or mean of the density under consideration.
We follow [29] and use the entropy corresponding to the `-density as the main
parameter. Furthermore, we assume that the `-densities are from some con-
venient family of densities F . In its original form, EXIT chart analysis uses a
Gaussian approximation whereF is taken as the family of symmetric Gaussian
`-densities which we denote by FN . Other choices are possible and useful in
obtaining accurate one-dimensional approximations to density evolution.

The next step is to derive the so-called EXIT function for the variable nodes
and check nodes. The EXIT function defines the input-output relation of the
single parameter characterizing the density. For several families of codes there
is some parameter for which the input-output relation is easy to derive. For the
variable nodes in LDPC codes this parameter is the mean of the `-density. To
derive the entropy input-output relation for a variable node it is convenient to
define a function ψF which given a family of `-densities F converts the mean
of the `-density to the entropy of the `-density

ψF : R 7→ [0, 1]. (2.75)

We require that F is chosen in such a way that this map is injective. Given a
family of `-densities F , the input-output entropy relation of a variable node of
degree i is denoted by vF ,i and can be expressed as

vF ,i(h, h0) = ψF
(

(i− 1)ψ−1
F (h) + ψ−1

F (h0)
)

, (2.76)

where h0 denotes the entropy corresponding to the channel `-density and h
the input entropy. Using the duality of variable nodes and check nodes [29] a
similar relation can be derived for the input-output entropy relation of a check
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node. The input-output entropy relation for a check node of degree j is denoted
by cF ,j and can be expressed as

cF ,j(h) = 1− ψF
(

(j− 1)ψ−1
F (1− h)

)

. (2.77)

Now, let (λ, ρ) be a degree distribution pair defining an ensemble of LDPC
codes. The average input-output entropy relation of the variable nodes is de-
noted by vF ,λ and given by

vF ,λ(h, h0) = ∑
i

λivF ,i(h, h0). (2.78)

In a similar way we define cF ,ρ as the average input-output relation of the
check nodes

cF ,ρ(h) = ∑
j

ρjcF ,j(h). (2.79)

Under the approximation that during decoding the messages of LLRs are dis-
tributed according to densities from F , we can approximate the entropies of
the densities during decoding for a certain degree distribution pair. Let hm
denote the average output entropy of the variable nodes during decoding at
iteration m. We assume decoding is initialized by sending the channel LLRs
to the check nodes at iteration 0. Given a degree distribution pair (λ, ρ) the
output entropy of the variable nodes at iteration m is given by

hm = ∑
i

λivF ,i
(

cF ,ρ(hm−1), h0
)

, m ≥ 1. (2.80)

The key to the design with EXIT charts is the observation that for successful
decoding we should have hm ≤ hm−1 for m ≥ 1. In case we fix ρ and we
want to design λ we can formulate the following optimization problem. To
design λ, we ask for the highest rate code such that hm ≤ hm−1 for hm−1 ∈
[0, 1]. Since ρ is fixed the rate of an LDPC code is proportional to ∑i

λi
i and the

optimization problem is easily formulated as a linear program which can be
solved efficiently:

maximize ∑
i

λi
i

subject to ∑
i

λi = 1,

∑
i

λivF ,i
(

cF ,ρ(h), h0
) ≤ h for h ∈ [0, 1]

(2.81)
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Improving EXIT Chart Design with Density Evolution

The EXIT chart design can be improved by a simple method which is proposed
in [31]. The idea is to start with an initial EXIT chart design by solving (2.81) for
F = FN . Next, density evolution is used to find the threshold of the designed
degree distribution pair (λ, ρ). At the SNR where density evolution just con-
verges to negligible bit-error rate, we compute the densities originating from
the variable nodes and check nodes. Moreover, we can compute the “real” en-
tropy input-output relation of the variable and check nodes. Now, to design an
improved λ we proceed as follows. Let hD,m denote the sequence of entropies
corresponding to the `-densities of the variable node output messages which
we compute with density evolution for m ≥ 0. For m = 0 we have hD,0 = h0.
For each hD,m, we denote the average output entropy of the check node by
cD,ρ(hD,m). The average output entropy hm of the variable nodes at iteration
m ≥ 1 is given by

hm = ∑
i

λivD,i(cD,ρ(hD,m−1), h0), (2.82)

where vD,i(cD,ρ(hD,m−1), h0) denotes the output entropy of a degree i variable
node when the input entropy is cD,ρ(hD,m−1) and the entropy of the channel
`-density is h0. We compute vD,i during density evolution and to improve the
EXIT chart design method we define v′F ,i(cD,ρ(hD,m), h0) as

v′F ,i(cD,ρ(hD,m), h0) = γi(hD,m)vF ,i(cD,ρ(hD,m), h0), (2.83)

where γi(hD,m) is given by

γi(hD,m) =
vD,i(cD,ρ(hD,m), h0)

vF ,i(cD,ρ(hD,m), h0)
. (2.84)

The result is that for the initial degree distribution we have computed a correc-
tion γi(hD,m) such that v′F ,i agrees with the entropies computed during density
evolution. We can replace vF ,i in (2.81) by v′F ,i and solve the linear program for
the sequence of hD,m. Hopefully by using v′F ,i the approximation will improve.
Furthermore, the role of λ and ρ can be exchanged to design ρ. Finally, one can
perform several iterations between linear programming and density evolution.
Our observation is that 2 or 3 iterations usually suffice to get good results.

Rate Design

In a system employing multistage decoding we opt for a target bit-error rate
(BER) of pb at a certain SNR. We can achieve this overall pb if we achieve a
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BER of pb on each of the equivalent binary channels. However, each of these
binary channels behaves differently for finite block lengths. The reason for this
is that the noise densities of these channels are different. The first level which
is decoded will have Gaussian noise and noise from the other bits. However,
the last level will only have Gaussian noise. As a consequence we cannot just
design codes with rates equal to the capacity of the equivalent binary channels
at a target SNR. For finite block lengths each channel requires a different back-
off from the target SNR to achieve a BER of pb. Hence to achieve a BER of pb for
the target SNR on each of the equivalent binary channels, we need to choose
the code rates low enough such that this BER is achieved.

Rate design techniques for multilevel coded systems are described and com-
pared in [23], but none of these techniques gives satisfactory results for LDPC
codes under iterative decoding. We expect that an extension of the finite-length
scaling techniques for LDPC codes as introduced in [34] can be very useful for
the purpose of rate design. However, these techniques are not yet fully devel-
oped for general BIOS channels and general decoders. In this chapter we use a
rudimentary approach to rate design which can be summarized as follows

1. Consider the design of a set of LDPC codes for the equivalent binary
channels at an SNR given by SNRt. Let Cl denote the capacity of the
binary channel at SNRt and we design an LDPC code of rate r = Cl for
the equivalent binary channel.

2. For a codeword length n and target BER pb, we determine the SNR for
which pb is achieved by means of a Monte Carlo simulation. Now, denote
this SNR by SNR′ and define SNR∆ as SNR∆ = SNR′ [dB]− SNRt [dB].
Next, we design an LDPC code for the equivalent binary channel at a
rate equal to the capacity of the equivalent binary channel at an SNR of
SNRt − SNR∆.

An additional Monte Carlo simulation can be performed and step 2 can be
repeated. One or two Monte Carlo simulations usually suffice to give good
results. In the next section we illustrate the design process for constellation A
and B.

2.5 Design Examples and Simulation Results

In this section we present the overall performance of constellation A and con-
stellation B with LDPC codes. First, we choose the decoding order of the equiv-
alent binary channels and we illustrate the EXIT chart design process combined
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Constellation A Constellation B
i αi Ci αi Ci

1 0.4636 0.166 0.5107 0.239
2 0.4636 0.216 0.3986 0.219
3 0.4636 0.305 0.3475 0.266
4 0.4636 0.501 0.2591 0.446
5 0.2901 0.373 0.1498 0.881
6 0.2373 0.433 0.0634 0.918
7 0.5260 1.000
8 0.2989 1.000

Table 2.2: The order of αi for constellation A and B.

with density evolution. Second, we present the design of LDPC codes for the
equivalent channels corresponding to constellation A and B and evaluate their
performance on these channels by simulations.

2.5.1 Decoding Order and Equivalent Binary Channels

Constellation A and B are defined in Table 2.1. As pointed out before, the
constrained constellation capacity does not depend on the order in which the
αi are given. However, we assume that we decode the levels in the order
X1, X2, . . . , Xd and the capacities of the equivalent binary channels do depend
on the order of the αi. We wish to choose the order in such a way that the ca-
pacities of the equivalent binary channels are not too low which would require
low-rate codes. Furthermore, if the capacity of one of the equivalent binary
channels is nearly equal to 1 that channel can be used uncoded. Table 2.2 gives
the decoding order we use for constellation A and B.

The resulting capacities of the equivalent binary channels at the SNR for
which the constellations have been designed are given as well. All equivalent
binary channels corresponding to constellation A have to be used coded. How-
ever, for constellation B the channels corresponding to X7 and X8 can be used
uncoded. Note that there are d! permutations of the αi and we just have chosen
an order which is acceptable in terms of required code rates.

2.5.2 Illustration of EXIT Chart Design

Figure 2.10 shows the `-densities of the equivalent binary channels of constel-
lation A at SNR = 11.76 dB. The `-densities defining the channels for X1 to X5



i

i

“thesis” — 2008/6/12 — 20:57 — page 45 — #55
i

i

i

i

i

i

2.5 Design Examples and Simulation Results 45

0
0.005
0.01

0.015
0.02

-10 -5 0 5 10

y

0
0.005
0.01

0.015
0.02

-10 -5 0 5 10

y

0
0.005
0.01

0.015
0.02

-10 -5 0 5 10

y

0
0.005
0.01

0.015
0.02

-10 -5 0 5 10

y

0
0.005
0.01

0.015
0.02

-10 -5 0 5 10

y

0
0.005
0.01

0.015
0.02

-10 -5 0 5 10

y

a1(y) a2(y)

a3(y) a4(y)

a5(y) a6(y)

Figure 2.10: The `-densities of the equivalent binary channels for constellation
A at SNR = 11.76 dB.

are clearly non-Gaussian. The `-density of X6 is Gaussian since all the previous
levels are assumed to be decoded correctly and only Gaussian noise is left. As
an example consider the design of LDPC codes for the equivalent binary chan-
nel of X1 corresponding to constellation A. We assume that the SNR is equal to
11.76 dB and at this SNR the capacity of the equivalent binary channel is 0.166
bit/use. We design a degree distribution pair with a maximum variable node
degree of 50 by solving the linear program of (2.81) where F is taken to be the
family of symmetric Gaussian densities FN . This gives the following degree
distribution pair

λ(x) = 0.3240x + 0.2526x2 + 0.0046x5 + 0.2078x6 + 0.0404x14

+0.0426x150.0894x32 + 0.0117x35 + 0.0269x36

ρ(x) = 0.7279x3 + 0.2721x4 (2.85)
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Figure 2.11: The EXIT chart entropy curves compared with density evolution
entropy curves.

This pair corresponds to an LDPC code of rate 0.173 and obviously the thresh-
old of this pair can not be at SNR = 11.76 dB since the capacity of the channel
is only 0.166. With density evolution we find a threshold at SNR = 18.92 dB.
At this SNR the capacity of the channel for X1 is equal to 0.189 bit/use. Hence
this degree distribution pair is able to transmit at about 90% of the capacity of
the equivalent binary channel for codeword lengths tending to infinity. Both in
terms of rate and SNR the distance to capacity is substantial. Figure 2.11 shows
the EXIT curves for the degree distribution pair of (2.85) at SNR= 11.76 dB for
F = FN . The figure also shows the entropies corresponding to the densities
computed with density evolution. The EXIT curves obtained from the Gaus-
sian approximation match well. However, the entropy curves computed with
density evolution hit a fixed point after about 30 iterations. Hence iterative de-
coding will not succeed and if we wish to achieve near-capacity performance,
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Figure 2.12: EXIT functions of several variable node degrees.

EXIT chart design based on a Gaussian assumption is not sufficient. Figure 2.12
shows the EXIT curves for several variable node degrees at an SNR slightly
higher than the threshold.

We clearly observe a mismatch between the curves, especially for higher
degree nodes. We can improve on the EXIT chart design method as described
in the previous section. We use the results obtained by density evolution to
compute the correction from (2.83). We solve the linear program of (2.81) with
the computed correction and this gives the following degree distribution pair

λ(x) = 0.3283x + 0.2273x2 + 0.1315x6 + 0.08393x7 + 0.1052x18

+0.003x19 + 0.1205x49

ρ(x) = 0.6253x3 + 0.3747x4 (2.86)

The rate of the corresponding code is 0.166 and the threshold of the code is at
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SNR = 13.72 dB. At this SNR the capacity of the equivalent binary channel
is 0.172 bit/use and the code is able to transmit at 97% of the capacity. This
is a substantial improvement compared to the Gaussian approximation and
when we perform an additional iteration between density evolution and linear
programming this results in a further improvement. Finally, note that there
is a gap of almost 2 dB between the threshold of the code and the capacity of
the channel. This seems substantial, but for this equivalent binary channel the
capacity hardly depends on the SNR. Hence the loss in rate is only small and
this is what matters in the end.

2.5.3 LDPC Codes for the Equivalent Binary Channels

LDPC Codes for Constellation A

For constellation A we design LDPC codes for a codeword length of n = 106

where we use a maximum variable node degree of 100. The degree distribu-
tions of the LDPC codes for constellation A are given in Table 2.3. The table
gives the rates ri of the codes and their thresholds which are denoted by SNR∗.

We transmit at a total rate R of 1.94 bit/use and simulation results are given
in Figure 2.13. The LDPC codes are decoded by the sum-product algorithm and
the figure shows the performance of the individual codes and the total average
performance. In the first case, the simulation is performed with perfect deci-
sions at the higher levels, i.e. there is no error propagation between different
levels. In the second case, error propagation is taken into account. We observe
that once the bit-error rate (BER) has reached a sufficiently low value, error
propagation does not play a role. If we compare the performance of the levels,
we observe that the behavior of the binary channels of the levels is different.
This is a consequence of the difference in the noise structure of these binary
channels. A BER of 10−5 is achieved at an SNR of 11.76 dB, which corresponds
to a distance of 0.34 dB to the constellation capacity limit. The distance to the
capacity of the Gaussian channel is 0.39 dB. Moreover, we achieve this BER
0.34 dB before the constrained capacity limit of a 32-PAM constellation.

LDPC Codes for Constellation B

For constellation B we design LDPC codes for codeword lengths of n = 32000
and n = 320000 for X1 to X6 where we use a maximum variable node degree
of 20 and 50, respectively. The equivalent binary channels for X7 and X8 can



i

i

“thesis” — 2008/6/12 — 20:57 — page 49 — #59
i

i

i

i

i

i

2.5 Design Examples and Simulation Results 49

Level X1 X2 X3 X4 X5 X6

λ2 0.278549 0.248909 0.221353 0.170690 0.197001 0.173440
λ3 0.202881 0.195496 0.189844 0.180700 0.188196 0.182454
λ7 0.130993 0.140359 0.127853 0.092980 0.102967 0.099392
λ8 0.076606 0.068553 0.082873 0.121127 0.111663 0.117011

λ15
λ17
λ20
λ21 0.009717
λ22 0.075288 0.145815 0.130456 0.019257 0.031783 0.015465
λ23 0.071948 0.035774 0.164600 0.142729 0.169356

λ100 0.163735 0.191151 0.211847 0.250648 0.225662 0.242882
ρ4 0.10196
ρ5 0.89804 0.403370
ρ6 0.596630 0.27505
ρ7 0.724950 0.13070
ρ8 0.86930
ρ9 0.67462

ρ10 0.32433 0.32538
ρ11 0.67567

ri 0.157 0.207 0.296 0.491 0.363 0.425

SNR∗ [dB] 10.36 10.98 11.30 11.52 11.59 11.70
Table 2.3: Degree distributions designed for constellation A for n = 106, total
rate R = 1.939.

be used uncoded. The degree distributions of the LDPC codes for n = 32000
are given in Table 2.4. There is a large spread in the thresholds of the codes for
the different levels. For instance the code for X1 has a threshold of 13.61 dB. In
other words, we require a back-off of 30.10− 13.61 = 16.49 dB to achieve a low
BER at the target SNR. However, the capacity of the equivalent binary channel
of X1 hardly varies with the SNR. Between SNR= 13.69 dB and SNR= 30.10 dB
the difference in capacity of the channel for X1 is only 0.03 bit/use. Transmis-
sion takes place at a rate of 4.77 bit/use and Figure 2.14 shows the simulation
results. The figure shows the performance of the individual codes and the to-
tal average performance. For a codeword length of 32000 error propagation
hardly plays a role once the BER is sufficiently low. An average BER of 10−4

is achieved at an SNR of 30 dB, which corresponds to a distance of 1.14 dB
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Figure 2.13: Simulation results for constellation A, n = 106

to the constellation capacity limit. The distance to the capacity of the AWGN
channel is 1.27 dB. Furthermore, this BER is achieved just before the 256-PAM
constrained capacity limit.

The degree distributions for a codeword length of 320000 for X1 to X6 are
given in Table 2.5. Compared with the codeword length of 32000 the rates
of the codes can be chosen higher and transmission takes place at a rate R of
4.90 bit/use. The simulation results are shown in Figure 2.15. A BER < 10−5

is achieved at an SNR slightly higher than 30 dB. Hence a low BER is achieved
within 0.6 dB of the capacity of the AWGN channel. This BER is achieved far
before the 256-PAM capacity limit which shows that with a 256-PAM constella-
tion it is unlikely that one can achieve the same performance. Compared with
constellation A it is easier to get close to the constrained capacity limit of the
constellation. Constellation A is generated by a map which is not injective and
in general it seems harder to get close in that case.
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Level X1 X2 X3 X4 X5 X6

λ2 0.362979 0.361939 0.335337 0.277036 0.196059 0.147179
λ3 0.299368 0.279302 0.270413 0.233689 0.239578 0.261360
λ6 0.060805
λ7 0.108425 0.154350 0.163249 0.235428 0.215362
λ8 0.124747 0.054619 0.034019 0.002427 0.080529
λ9 0.086918

λ19 0.220558
λ20 0.125988 0.195714 0.205882 0.265221 0.326509 0.075012

ρ4 1.000000 1.000000 0.545450
ρ5 0.454550
ρ6 0.666667
ρ7 0.333333

ρ32 1.000000
ρ46 1.000000

ri 0.201 0.184 0.228 0.397 0.863 0.900
SNR∗ [dB] 13.61 22.51 27.45 29.54 29.19 29.78

Table 2.4: Degree distributions designed for constellation A for n = 32000, total
rate R = 4.773.
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Figure 2.14: Simulation results for constellation B, n = 32000.
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Level X1 X2 X3 X4 X5 X6

λ2 0.546364 0.281285 0.218469 0.165561 0.103892
λ3 0.322008 0.176337 0.200442 0.180557 0.191428
λ4 0.019178
λ6 0.165870
λ7 0.187371 0.173931
λ8 0.075676 0.009430 0.038578
λ9 0.0297550 0.172671

λ10 0.135522
λ11 0.017232
λ12 0.116111
λ14 0.0588134
λ15 0.0764956
λ16 0.130306
λ18 0.019119
λ24 0.015300
λ26 0.002224
λ50 0.008673 0.243164 0.248979 0.291948 0.377308

ρ4 0.081633
ρ5 0.918367 0.45455
ρ6 0.54545
ρ7
ρ8 1.000000
ρ9

ρ42 1.000000
ρ70 1.000000

ri 0.226 0.252 0.427 0.873 0.911

SNR∗ [dB] 28.00 29.47 29.91 29.62 29.88
Table 2.5: Degree distributions designed for constellation B for n = 320000,
total rate R = 4.896
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Figure 2.15: Simulation results for constellation B, n = 320000
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2.6 Conclusions

We have shown that with the superposition of binary random variables, signal
constellations can be generated with a constrained capacity limit very close to
the capacity of the AWGN channel. We have designed signal constellations
for spectral efficiencies from 4 bit/s/Hz to 10 bit/s/Hz which have their con-
strained capacity limit within 0.1 dB of the capacity of the AWGN channel. For
the constellations we have designed we achieve shaping gains ranging from
0.5 to 1.4 dB compared with conventional PAM constellations.

We have shown that combined with multistage decoding at the receiver
the problem of achieving capacity on the AWGN channel reduces to achieving
capacity on a set of binary-input output-symmetric channels. We have consid-
ered the design of binary LDPC codes for these channels and show that one can
get very close to the capacity of the AWGN channel. With one of the constel-
lations which is designed for 10 bit/s/Hz we achieve a low BER with binary
LDPC codes within 0.6 dB of the capacity of the AWGN channel.
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Chapter 3

Signal Shaping for
Bit-Interleaved
Coded-Modulation

3.1 Introduction

In this chapter we consider communication over discrete-time memoryless chan-
nels where the channel inputs and outputs take values in R. Furthermore, we
assume that the capacity of the channel is significantly larger than 1 bit/use.
In this case binary signaling incurs a large loss in rate. The channels we con-
sider often have a continous-time counterpart and for these channels we are
interested in spectral-efficient communication.

We are interested in reliable communication and for this purpose we con-
sider coded modulation schemes which are based on binary error-correcting codes.
The reason that we opt for binary codes is that these are well understood and
the information source is often binary. Furthermore, binary codes are often
easier to decode than their counterparts defined over larger alphabets. Finally,
some families of binary codes such as low-density parity-check codes [35], [1]
can be designed such that a near capacity performance becomes possible on
many memoryless binary channels.

Coded modulation based on binary error-correcting codes has gained con-
siderable attention in literature. A well-known scheme is multilevel coding
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(MLC) as introduced in [8]. In MLC a set of binary codes is used and the bits
of the codewords are mapped to constellation symbols. At the receiver a mul-
tistage decoding (MSD) procedure can be used where the codes are decoded
in a sequential fashion. Multilevel coding has the potential to achieve a near-
capacity performance on several channels. However, a major disadvantage is
that for high spectral efficiencies a considerable number of levels is required.

Another major breakthrough was the invention of trellis-coded modulation
(TCM) by Ungerboeck [36]. Since [36] it has been accepted that modulation and
coding should be combined for improved performance. With TCM a binary
code is used to select constellation symbols in such a way that the distance
profile of the overall Euclidian space code is improved. On several channels
this leads to a large improvement compared to conventional systems.

A scheme that breaks with Ungerboeck’s paradigm in the sense that the fo-
cus is not on the Euclidian distance profile is bit-interleaved coded-modulation
(BICM). The bits of a single codeword are interleaved and mapped to constella-
tion symbols. The overall performance depends on the constellation, the map
from bits to constellation symbols, the code used and the decoding strategy. If
one uses Gray mapped signal constellations the achievable rate is quite close to
the capacity limit of the signal constellation. Another popular decoding strat-
egy is BICM with iterative decoding (BICM-ID) where a relatively simple code
is combined with a signal constellation [37], [38]. At the receiver iterations are
performed between the constellation demapper and the decoder of the code. A
major advantage of BICM over MLC-MSD is that for the same number of chan-
nel input symbols a long binary codeword is used instead of several shorter
binary codewords.

So far we did not consider the actual channel. For several interesting chan-
nels mutual information is maximized for a Gaussian distribution on the chan-
nel input. This is for instance the case for the additive white Gaussian noise
(AWGN) channel and the Rayleigh fading channel with perfect channel state
information at the receiver. When conventional pulse-amplitude modulation
(PAM) constellations with a uniform spacing and uniform selection of the con-
stellation symbols are used, capacity cannot be achieved and a so-called shap-
ing gain is available [14].

Several signal shaping techniques are proposed in literature [20], [21], [13],
[11]. Following [11], we show in [39] that with a very simple technique based
on the superposition of binary random variables one can design signal con-
stellations which are able to perform very close to the capacity of the AGWN
channel with LDPC codes in a MLC-MSD setting. The major disadvantage
is that for high spectral efficiencies one requires a large number of decoding
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stages.
These coded modulation schemes based on binary codes lead to an equiv-

alent binary channel or set of equivalent binary channels at the bit level. This
is regardless of the channel and the degrees of freedom such as the signal con-
stellation, the map from bits to constellation symbols and decoding strategy.
From an information theoretical point of view we wish to choose these param-
eters in such a way that the overall achievable rate is close to the capacity of the
channel. Moreover, from a practical point of view we want to use a decoding
scheme which is favorable in terms of complexity.

Once a choice has been made for the modulation method and decoding
scheme one requires a set of codes for the equivalent channels such that a tar-
get performance is reached on each of these channels. In this chapter the focus
is not on the error-correcting codes, but we assume that a family of power-
ful binary error-correcting codes is available. This family of codes should be
practical in the sense that feasible encoding and decoding algorithms with a
good performance exist. Moreover, this family of codes should be amendable
to analysis and should have sufficiently many degrees of freedom such that
given a channel we can find a code which performs reasonably close to the
capacity of this channel.

One such family of codes are binary low-density parity-check (LDPC) codes
[35], [1]. The performance of an ensemble of LDPC codes is amendable to
analysis as is shown in [40], [41], [26]. Moreover, given a binary-input output-
symmetric channel, we can often design LDPC codes which have a perfor-
mance close to the capacity of the channel under suboptimal decoding [26],
[39].

We show how to construct a coded modulation scheme which is able to
perform very close to the capacity of the AWGN channel. The method merges
the merits of BICM with uniformly spaced pulse-amplitude modulation (PAM)
constellations and signal shaping. These results are based on the work pre-
sented in [39]. However, unlike in [39], we only require 3 or 4 decoding stages
to get close to the capacity of the AWGN channel for several spectral efficien-
cies. The advantage of this is that there is less error-propagation for short code-
word lengths and for most of the source bits a single long codeword can be
used. The method we use is based on shaping a conventional uniformly spaced
PAM constellation.

The outline of this chapter is as follows. In Section 3.2 we give an overview
of coded modulation techniques and decoding strategies. In Section 3.3 we
consider signal shaping and introduce a method to generate signal constella-
tions for the AWGN channel which have a constrained capacity limit close to
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the capacity of the AWGN channel. Furthermore, these constellations allows
one to use a decoding strategy which is favorable in terms of complexity. In
Section 3.4 we consider the use of binary codes on the equivalent binary chan-
nels defined by the signal constellation and decoding strategy. First, we design
M-PAM-LDPC codes which are LDPC codes optimized for uniformly spaced
PAM constellations. These extend the results of [7] to higher spectral efficien-
cies. Second, we design shaped PAM-LDPC codes which provide a shaping
gain over M-PAM-LDPC codes. In Section 3.5 we provide some design exam-
ples where we design binary LDPC codes for the decoding strategy we pro-
pose. We end with conclusions in Section 3.6.

3.2 Coded Modulation

3.2.1 Introduction
Consider a discrete-time memoryless channel with input X ∈ R and output
Y ∈ R. Furthermore, the channel is defined by a channel transition density
fY|X(y|x). The capacity of the channel is defined as

C = max
fX

∫ ∞

−∞

∫ ∞

−∞
fY|X(y|x) fX(x) log2

fY|X(y|x)
∫ ∞

−∞
fY|X(y|x′) fX(x′)dx′

dxdy, (3.1)

where fX defines the distribution of X and capacity is achieved for an optimal
fX. Our main example is the AWGN channel which is defined by

Y = X + N, (3.2)

where the channel input X is disturbed by zero-mean Gaussian noise N with
variance σ2. The channel transition density is given by

fY|X(y|x) = fN(y− x), (3.3)

where fN is the density of N

fN(n) =
1√

2πσ2
e−

n2

2σ2 . (3.4)

The capacity of the AWGN channel is given by the well-known capacity for-
mula

C =
1
2

log2 (1 + SNR) , (3.5)
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where SNR is defined as
SNR =

Es

σ2 , (3.6)

and where Es denotes the mathematical expectation of X2. Furthermore, capac-
ity is achieved for a Gaussian distribution on X. Thus to achieve capacity we
require a coding and modulation scheme which results effectively in a Gaus-
sian distribution on the channel input X.

3.2.2 Signal Constellations and Modulation
To achieve capacity we require a coding scheme which results in the optimal
fX. However, as for the AWGN channel defined in the previous section the
optimal distribution can be a continuous distribution. The information source
in a digital communication system is usually binary and we use a finite signal
constellation S to generate a channel input Z. The elements of S are the constel-
lation symbols and the probability with which they are selected is defined by a
probability measure PS

Pr [Z = z] = PS(z) for z ∈ S . (3.7)

Now, the achievable rate is given by I(Y; Z)

I(Y; Z) =
∫ ∞

−∞
∑
z∈S

fY|X(y|z)PS(z) log2
fY|X(y|z)

∑z′∈S fY|X(y|z′)PS(z′)
dy. (3.8)

We refer to I(Y; Z) as the constrained constellation capacity limit. The loss in rate
with respect to the optimal fX depends on the choice of S and PS . Once a
suitable S and PS are chosen it is not straightforward to come up with a cod-
ing scheme which has practical encoding and decoding algorithms and which
generates the desired S with the probability measure PS . We cannot simply
take a code from a random ensemble of codes since description and decoding
complexity would be too high.

To solve this problem we assume that we are able to construct practical
codes with a codeword alphabet much smaller than the cardinality of S . Fur-
thermore, we assume that the distribution of the codeword symbols is uniform.
We restrict ourselves to binary codes.

Let X1, . . . , Xd denote a tuple of i.i.d. random bit variables taking values
in {−1, 1}. We can think of X1, . . . , Xd as a realization of a set of codeword
symbols of one or more binary codes. Next, we define a modulation map Φ

Φ : GF(2)d → R, (3.9)
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where xi ∈ {−1, 1} for i = 1 . . . d. The modulation map is used to generate a
channel input Z from X1, . . . , Xd

Z = Φ(X1, . . . , Xd), (3.10)

and it defines the signal constellation with its probability measure PS

S = {Φ(x1, . . . , xd)|x1 ∈ {−1, 1}, . . . , xd ∈ {−1, 1}} (3.11)

PS(z) =
1
2d ∑

x1

· · ·∑
xd

�

{z}(Φ(x1, . . . , xd)), (3.12)

where
�

{z} is the set indicator function which for a set A is defined as

�

A(x) =

{

1 x ∈ A
0 x /∈ A.

(3.13)

The map Φ can be either injective or not injective. In case Φ is not injective the
distribution of the constellation symbols is possibly non-uniform. We postpone
a discussion on the actual choice of Φ and first consider the combination of
modulation with error-control coding.

3.2.3 Coding Schemes and Decoding

Let a channel input Z be generated by a modulation map Φ

Z = Φ(X1, . . . , Xd), (3.14)

where X1, . . . , Xd are uniform i.i.d. random bit variables and let Y denote the
channel output. To compare different coding schemes and decoding strategies
our benchmark is achievable rate. For this we consider the mutual information
between the channel output Y and X1, . . . , Xd

I(Y; (X1, . . . , Xd)) =
1
2d

∫ ∞

−∞
∑
x1

· · ·∑
xd

fY|X (y|Φ(x1, . . . , xd))

· log2
fY|X (y|Φ(x1, . . . , xd))

1
2d ∑x′1

· · ·∑x′d
fY|X

(

y|Φ(x′1, . . . , x′d)
)dy. (3.15)
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Multilevel Coding with Multistage Decoding

By the chain rule of mutual information we can express I(Y; (X1, . . . , Xd)) as

I(Y; (X1, . . . , Xd)) = I(Y; X1) + I(Y; X2|X1) + . . . + I(Y; Xd|X1, . . . , Xd−1).
(3.16)

This identity suggests a multilevel encoding procedure with multistage decod-
ing at the receiver [8], [23]. Let Ci for i = 1 . . . d define a binary error-correcting
code of rate ri and length n. A codeword of Ci is denoted by xi and the jth co-
ordinate of xi is denoted by xi,j. To generate a channel input word z we apply
Φ in a componentwise fashion to a set of d codewords. The jth component of a
channel input word z is given by

zj = Φ(x1,j, . . . , xd,j). (3.17)

With a slight abuse of notation we write

z = Φ(x1, . . . , xd), (3.18)

where z ∈ Rn is a vector with channel input symbols.
At the receiver we use a multistage decoding procedure where decoding

starts with C1 and afterwards we decode C2, . . . , Cd one after the other. While
decoding Ci at level i we make use of the decisions made in the previous lev-
els and we assume we have decoded the codes at these levels correctly. An
overview of this system is shown in Figure 3.1. We can achieve the left-handside
of (3.16) if the rates of the codes are chosen properly. See e.g. [23] for more
details. However, multilevel encoding with several codes and multistage de-
coding has some disadvantages. First, we cannot start decoding all codes at
once when all channel symbols are received. We first require the decision of
the lower levels which results in a decoding delay. Moreover, we assume that
the decisions on the decoded levels are correct and when this is not the case
there can be error propagation. Second, source bits are encoded into d binary
codewords of length n. If we were able to use a single codeword of length nd,
we would improve the performance for finite codeword lengths.

Multilevel Coding with Parallel and Independent Decoding

To overcome the disadvantage of multistage decoding we reconsider the mu-
tual information between Y and X1, . . . , Xd and write

I(Y; (X1, . . . , Xd)) = I(Y; X1) + I(Y; X2|X1) + . . . + I(Y; Xd|X1, . . . , Xd−1)

≥ I(Y; X1) + I(Y; X2) + . . . + I(Y; Xd), (3.19)
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Encoder C1

Encoder Cd

Φ(x1, . . . , xd)
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x̂d

x1

xd z

y

Figure 3.1: Block diagram of multilevel coding with multistage decoding.

where on the right-handside we have dropped the conditioning. We define

IPID(Y; (X1, . . . , Xd)) = I(Y; X1) + I(Y; X2) + . . . + I(Y; Xd), (3.20)

and (3.19) suggests a parallel-and-independent decoding (PID) scheme. We
use multilevel encoding at the transmitter and at the receiver we decode C1
to Cd independently. In this case the achievable rate is IPID(Y; (X1, . . . , Xd))
and the loss with respect to I(Y; (X1, . . . , Xd)) depends on the channel and the
modulation map Φ. We will see later that for the AWGN channel and a prop-
erly chosen Φ the loss is negligible. The receiver structure of the PID scheme is
illustrated in Figure 3.2.

Bit-interleaved Coded Modulation

Parallel-and-independent decoding still uses d codes and to overcome the sec-
ond disadvantage of multistage decoding, we can use bit-interleaved coded
modulation [9] which is shown in Figure 3.3.

In bit-interleaved coded modulation we use a single binary code C of length
nd and rate r. Let x′ = π(x) denote a random permutation of the bits of a
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PSfrag replacements

Channel

Decoder C1

Decoder Cd

x̂1

x̂d

ẑ ŷ

Figure 3.2: Block diagram of parallel-and-independent decoding.

PSfrag replacements
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ChannelDecoder C
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Figure 3.3: Block diagram of bit-interleaved coded modulation.

codeword x ∈ C. The jth coordinate of the channel input word z is generated
as

zj = Φ(x′d(j−1)+1, x′d(j−1)+2, . . . , x′d(j−1)+d). (3.21)

The achievable rate with BICM is equal to the achievable rate with PID [9].
In the next section we consider how to choose the modulation map Φ such

that I(Y; (X1, . . . , Xd)) and IPID(Y; (X1, . . . , Xd)) are close to the capacity of the
AWGN channel.

3.3 Signal Shaping for Bit-interleaved Coded
Modulation

In this section we present a hybrid scheme which merges the merits of BICM
with signal shaping. This scheme is able to bridge the shaping gap on the
AWGN channel with a small set of binary error-correcting codes.

First, we describe how to choose Φ such that IPID is close to the constrained
constellation capacity. The resulting signal constellations are uniformly spaced
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PAM constellations with a Gray map from bits to constellation symbols. It is
well-known that these constellations perform well in a BICM setting [9]. How-
ever, these constellations do not provide any shaping gain. Next, we show how
to construct a Φ together with a decoding scheme such that shaping is possi-
ble with an acceptable number of multistage decoding levels. Furthermore, we
give some numerically optimized Φ which are well-suited for communication
on the AWGN channel. These Φ are used in the next section when we consider
error-control coding.

3.3.1 Signal Constellations for BICM

A M-PAM constellation with a uniform spacing of the M = 2d constellation
symbols is defined by

S =

{

1
√

EPAM,d
(−M + 2i− 1) |i = 1, 2, 3, . . . , 2d

}

, (3.22)

where EPAM,d is a normalization constant given by

EPAM,d =
22d − 1

3
, (3.23)

such that when the constellation symbols are selected with equal probability,
the average energy expended per channel use is unity. The constrained con-
stellation capacity is plotted for several M in Figure 3.4. The figure shows the
rate versus the normalized SNR. The normalized SNR is defined as [14]

SNRnorm =
SNR

22R − 1
, (3.24)

where R denotes the rate at which a scheme transmits. The value of SNRnorm
signifies how far a signal constellation is operating from the capacity of the
AWGN channel. The baseline performance is SNRnorm = 0 dB which is the re-
quired SNR to achieve any rate on the AWGN channel for a Gaussian channel
input. We observe that depending on the transmission rate there is a substan-
tial gap to the capacity of the AWGN channel. For instance to transmit at a rate
of 3 bit/use with a 16-PAM constellation there is a shaping gain available of
1.19 dB.

Let x1, . . . , xd denote the realization of a tuple of binary random variables
where each xi takes values in {−1, 1}. A natural labeling of the symbols of
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Figure 3.4: The constrained capacity limits of the PAM constellations.

an M-PAM constellation is generated by the superposition of d binary random
variables where M = 2d

Φnat(x1, . . . , xd) =
1

√

EPAM,d
·

d

∑
i=1

2i−1xi. (3.25)

As an alternative a Gray labeling of the constellation symbols can be generated
by a Φ of the form

Φgray(x1, . . . , xd) =
1

√

EPAM,d
·

d

∑
i=1

(

d

∏
j=i

xj

)

2i−1. (3.26)

The achievable rate does not depend on the labeling when a multistage de-
coding procedure is used. However, the achievable rate with PID and BICM
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Figure 3.5: Capacity curves for a 16-PAM constellation with several decoding
strategies.

does depend on the labeling of the constellation symbols. Figure 3.5 shows
a plot of the constrained constellation capacity of a 16-PAM constellation to-
gether with IPID for a 16-PAM constellation generated by (3.25) and (3.26). We
observe that the use of (3.25) results in a substantial loss with respect to the
constrained constellation capacity. The use of (3.26) results in a small loss es-
pecially in the regime where the rate is above 75 percent of the constrained
constellation capacity. For different values of M results are similar and we con-
clude that modulation maps given by (3.26) are well-suited for BICM. How-
ever, there is still a gap to the capacity of the AWGN channel and our next
topic is how to bridge this gap.
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3.3.2 Signal Constellations for Shaping

In [39] we show that with superposition modulation we can generate signal
constellations with a constrained constellation capacity very close to the ca-
pacity of the AWGN channel. In this case Φ is given by

Φspm(x1, . . . , xd) =
d

∑
i=1

αixi αi ∈ R. (3.27)

The potential of (3.27) to generate good signal constellations can be seen as
follows. Suppose we choose αi = 1 and let d → ∞. In this case the distribution
of

Z =
1√
d

d

∑
i=1

Xi, (3.28)

converges to the Gaussian distribution by the central limit theorem. Further-
more, for finite values of d we can numerically maximize the constrained con-
stellation capacity. In [39] several design examples are presented. For instance
to transmit at a rate of 5 bit/use we can use the following Φ

Φ(x1, . . . , xd) = 0.0634x1 + 0.1498x2 + 0.2591x3 + 0.2989x4 + 0.3475x5

+ 0.3986x6 + 0.5107x7 + 0.5260x8. (3.29)

Figure 3.6 shows the constrained capacity limit of the resulting signal constel-
lation. We observe that for a wide range of SNRs the constrained constellation
capacity limit is very close to the capacity of the AWGN channel. For a Gaus-
sian channel input a rate of 5 bit/use is achieved at SNR = 30.10 dB. The
signal constellation defined by (3.29) requires 30.28 dB to achieve 5 bit/use.
However, a conventional 256-PAM constellation with a uniform spacing and
uniform distribution on the constellation symbols requires 31.55 dB to achieve
the same rate. Hence the constellation achieves a shaping gain of 1.27 dB.

For modulation maps of the form given by (3.27) the constrained constella-
tion capacity is achievable with multilevel encoding and multistage decoding.
However, the disadvantage is that a large number of levels is required with
multistage decoding. For instance for the map of (3.29), we require a set of 8
binary codes.

The figure also shows the parallel-and-independent decoding capacity limit
which can be achieved with a code in the BICM setting. Unfortunately, the loss
with respect to the constrained constellation capacity limit is substantial and
bit-interleaved coded modulation will only able to achieve a small fraction of
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Figure 3.6: The capacity limit of the signal constellation for 5 bit/use.

the capacity of the AWGN channel. One can think of changing the natural
labeling of the constellation symbols into a Gray labeling, but this hardly im-
proves the PID capacity. In [9] it is actually conjectured that uniformly spaced
PAM constellations with a Gray map from bits to constellation symbols maxi-
mize the PID capacity. Next, we show how to choose Φ such that the capacity
of the AWGN channel can be approached closely with a decoding scheme that
requires only a few levels of multistage decoding.

3.3.3 Shaping of PAM Constellations for BICM

To generate a signal constellation with a constrained constellation capacity
close to the capacity of the AWGN channel, we can use a modulation map
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of the form

Φspm(x1, . . . , xd) =
d

∑
i=1

αixi, (3.30)

where the αi are chosen such that I(Y; Z) is maximized as is shown in [39].
With multilevel encoding and multistage decoding we can in principle achieve
I(Y; Z). However, the number of codes required is equal to the number of lev-
els. In general the difference between the constrained constellation capacity
and the PID capacity of the constellations generated by (3.30) is large. Signal
constellations with a PID capacity close to the constrained constellation capac-
ity are generated by modulation maps of the form

Φgray(x1, . . . , xd) =
1

√

EPAM,d
·

d

∑
i=1

(

d

∏
j=i

xj

)

2i−1. (3.31)

However the resulting signal constellations do not provide any shaping. To
have a shaping gain and the possibility to use a BICM code, we combine (3.30)
and (3.31) to construct a modulation map of the form

Φhybrid(x1, . . . , xd) =
d1

∑
i=1

αixi + β · 1
√

EPAM,d2

·
d1+d2

∑
i=d1+1

(

d1+d2

∏
j=i

xj

)

2i−1, (3.32)

where αi ∈ R and β ∈ R. Furthermore d1 and d2 are positive integers with
d = d1 + d2. Essentially, a base signal constellation is generated by Φgray and
this constellation is scrambled by d1 random bit variables in such a way that a
shaping gain is achieved.

Now, we use Φhybrid as follows. Let Ci for i = 1 . . . d1 denote a binary code
of length n and rate ri. A codeword of Ci is denoted by xi and the jth coordinate
of xi by xi,j. Next, let C denote a binary code of length nd2 and rate r. We denote
a codeword of C by x and a random permutation of the bits of a codeword by
x′. Furthermore, the jth coordinate of x′ is denoted by x′j. The jth coordinate of
the channel input word z is generated as

zj = Φhybrid(x1,j, . . . , xd1,j, x′d2(j−1)+1, x′d2(j−1)+2, . . . , x′d2(j−1)+d2
). (3.33)

The total transmission rate R of this scheme is

R =
d1

∑
i=1

ri + d2r. (3.34)
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Figure 3.7: Hybrid scheme combining multistage decoding with bit-
interleaved coded modulation.

At the receiver we first decode C1 to Cd1
with a multistage decoding ap-

proach. Next, we decode C where we make use of the decisions made on C1
to Cd1 . An overview of this scheme is given in Figure 3.7. The potential of this
scheme is that with only a few (3 or 4) multistage decoding levels we are able
to get close to the capacity of the AWGN channel for any spectral efficiency.
Furthermore, most of the source bits will be encoded by C which takes full
advantage of the larger codeword length.

The constrained constellation capacity of the signal constellation generated
by (3.32) is given by

I(Y; Z) = I(Y; (X1, . . . , Xd)), (3.35)

and with the chain rule of mutual information we can write

I(Y; (X1, . . . , Xd)) = IMSD1 + IMSD2 , (3.36)

where

IMSD1 = I(Y; X1) + I(Y; X2|X1) + . . . + I(Y; Xd1
|X1, . . . , Xd1−1), (3.37)
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and

IMSD2 = I(Y; Xd1+1|X1, . . . , Xd1
) + I(Y; Xd1+2|X1, . . . , Xd1+1)

+ . . . + I(Y; Xd1+d2 |X1, . . . , Xd1+d2−1) (3.38)

With the proposed decoding scheme IMSD1 is achievable since we use multi-
stage decoding for X1 to Xd1 . However, IMSD2 is not achievable, but we are
able to achieve IPID2 which is obtained from (3.38) by dropping the condition-
ing on Xd1+1, . . . , Xd1+d2

IPID2 = I(Y; Xd1+1|X1, . . . , Xd1) + I(Y; Xd1+2|X1, . . . , Xd1)

+ . . . + I(Y; Xd1+d2 |X1, . . . , Xd1) ≤ IMSD2 (3.39)

Since we use Φgray for Xd1+1, . . . , Xd1+d2 the loss in (3.39) is only small. We
refer to the total rate which is achievable given the proposed decoding scheme
as I′(Y; Z)

I′(Y; Z) = IMSD1 + IPID2 . (3.40)

3.3.4 Numerical Optimization of Constellations for BICM
Once we have chosen d1 and d2 in (3.32) the degrees of freedom are the αi and
β. As in [39] we can numerically maximize I ′(Y; Z) for a given target SNR. For
this note that the transmission power Es is given by

Es =
d

∑
i=1

α2
i + β2. (3.41)

We can formulate the optimization problem as follows

max I′(Y; Z), where Z =
d1

∑
i=1

αixi + β ·Φgray(xd1+1, . . . , xd1+d2)

subject to Es =
d

∑
i=1

α2
i + β2. (3.42)

We have experimented with several optimization strategies and the use of
differential evolution [25] gives good results. Differential evolution is a global
optimizer based on a genetic algorithm and hill-climbing. We have solved
(3.42) for target rates between 2 bit/use and 5 bit/use for d1 = 2 and d1 = 3.
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R 2.0 bit/use 3.0 bit/use
SNR [dB] 11.76 17.99

d1 2 3 2 3
d2 2 2 3 3
α1 0.5601 0.4722 0.5735 0.5105
α2 0.3646 0.4722 0.3515 0.4024
α3 0.2802 0.2632
β 0.7439 0.6896 0.7400 0.7129
|S| 16 24 32 64

I(Y; Z) 1.970 1.986 2.953 2.978
I′(Y; Z) 1.970 1.984 2.952 2.976

∆AWGN [dB] 0.19 0.10 0.29 0.14
∆PAM [dB] 0.56 0.64 0.81 0.95

R 4.0 bit/use 5.0 bit/use
SNR [dB] 24.07 30.11

d1 2 3 2 3
d2 4 4 5 5
α1 0.5132 0.5118 0.5069 0.4956
α2 0.3054 0.3950 0.3225 0.3894
α3 0.2659 0.2555
β 0.8021 0.7151 0.7994 0.7331
|S| 64 128 128 256

I(Y; Z) 3.945 3.973 4.939 4.969
I′(Y; Z) 3.944 3.971 4.938 4.967

∆AWGN [dB] 0.34 0.18 0.37 0.20
∆PAM [dB] 0.97 1.12 1.04 1.22

Table 3.1: Parameters of the designed signal constellations.

The latter implies that with the proposed scheme only 3 or 4 multistage decod-
ing stages are required.

The optimization results are shown in Table 3.1. The table gives the target
rate R for which we design a signal constellation and the SNR for which the
capacity of the AWGN channel is equal to this target rate. The table gives the
values of the αi and β. The constrained constellation capacity I(Y; Z) of the
resulting signal constellation is given and the table shows the value of I ′(Y; Z)
which is achievable with the proposed decoding scheme. The distance in dB
to the capacity of the AWGN channel is given by ∆AWGN. Finally, the shap-
ing gain which the signal constellation achieves with respect to a conventional
PAM constellation with a size at least as large as the designed constellation is
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Figure 3.8: The numerically optimized signal constellations for d1 = 2. From
left to right and top to bottom are shown the constellations for d2 = 2, d2 = 3,
d2 = 4 and d2 = 5.

given by ∆PAM.
The optimization results show that for d1 = 2 and the range of rates we

consider, shaping gains from 0.56 dB to 1.04 dB are achieved compared to uni-
formly spaced PAM constellations. This under the constraint that we use the
decoding scheme we proposed in this section. Furthermore, the distance from
the capacity of the AWGN channel is less than 0.4 dB for all designs. For d1 = 3
shaping gains are higher and the distance to the capacity of the AWGN channel
is less than 0.2 dB.

In the next section we consider the use of binary error-correcting codes for
the Φ corresponding to d1 = 2 and we discuss these maps in somewhat more
detail. Figure 3.8 gives an impression of the geometrical structure of the sig-
nal constellations for d1 = 2. The figure shows the quadrature constellations
which are generated by using both dimensions independently. We clearly ob-
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Figure 3.9: Capacity limits of the designed signal constellations with the hybrid
decoding strategy.

serve a non-uniform spacing of the constellation symbols, but also the under-
lying uniformly spaced PAM constellation is visible. Figure 3.9 shows a plot of
the achievable rate with the proposed decoding schemes for a larger range of
SNRs. From this figure we conclude that the designed Φ are useful in a range
of rates around the target rate for which it has been designed.

3.4 Error-Control Coding with Binary Codes

In this section we study the properties of the binary channels resulting from
the modulation maps we have defined in the previous section. For the pur-
pose of error-control coding it is convenient when memoryless binary chan-
nels are symmetric. For the Φ we consider the equivalent binary channels are
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not necessarily symmetric. However, by the use of a technique which is called
channel adapters in [7], one can make a binary channel symmetric. We derive
some general properties of binary channels and densities of log-likelhood ra-
tios and summarize the idea behind channel adapters. Once these properties
are established, error-correcting codes can be chosen to get to capacity on the
binary channels. We use binary LDPC codes and we briefly review these codes
and their analysis and design techniques.

3.4.1 Log-likelihood Ratios and Channel Symmetry
Let fY|X be a transition density of a memoryless binary channel. This channel
is called symmetric if

fY|X(y|1) = fY|X(−y| − 1). (3.43)

In this case the performance of a message-passing decoder satisfying some
symmetry conditions does not depend on the transmitted codeword and the
analysis and design of the code can be restricted to the all-zeros codeword of
the LDPC code.

Given a channel output Y, the log-likelihood ratio (LLR) is defined as

L = log
fY|X(Y|1)

fY|X(Y| − 1)
. (3.44)

In this notation we view L as a random variable which is a function of the
random variable Y. The LLR is a sufficient statistic and from an information
theoretical point of view this implies that L contains all information about X
and no information is lost as the following lemma shows.

Lemma 4 Consider a memoryless binary channel with input X and output Y. The
channel is defined by a transition density fY|X. Next, define a random variable L by
(3.44). All information about X is contained in L, i.e.,

I(L; X) = I(Y; X). (3.45)

Proof 4 A proof can be found e.g. in [29] and for convenience we provide a proof here
also. First, note that X, Y and L form a Markov chain, i.e.,

X → Y → L. (3.46)

By the chain rule of information we have

I((Y, L); X) = I(L; X) + I(Y; X|L) = I(Y; X) + I(L; X|Y). (3.47)
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Since X → Y → L, it follows that I(L; X|Y) = 0 and we have

I(L; X) = I(Y; X)− I(Y; X|L). (3.48)

Hence it suffices to show that Y and X are conditionally independent given L which
would imply that I(Y; X|L) = 0. To show that Y and X are conditionally independent
given L it is sufficient to show that we can write fY|X as

fY|X(y|x) = a(x, l)b(y), (3.49)

for suitable a(x, l) and b(y) where l denotes a realization of L. By definition of the LLR
we have

fY|X(y|1) = fY|X(y| − 1)el, (3.50)

and we can write

fY|X(y|x) = fY|X(y| − 1) · e
x+1

2 l = b(y) · a(x, l). (3.51)

Hence I(Y; X|L) = 0 and the claim follows.

We can view the computation of the LLR as part of the channel and this
new channel is defined by a transition density fL|X. We always assume that
this density exists. Furthermore, note that in general it is not easy to obtain an
analytical expression for fL|X. However, one can resort to numerical techniques
to obtain fL|X. Now, we can compute the LLR of this new channel as

L′ = log
fL|X(L|1)

fL|X(L| − 1)
. (3.52)

Because of the nature of the LLR, we expect that L′ = L. To show this we
require the following lemma.

Lemma 5 Let a binary memoryless channel be defined by a transition density fY|X. If
the density of LLRs fL|X exists it will satisfy (for l not equal to ±∞)

fL|X(l|1) = el fL|X(l| − 1). (3.53)

Proof 5 We give a sketch of the proof based on measure theory. First note that fY|X
defines a measure on the measurable space (R,F ) where F denotes a σ-field of subsets
of R. Let A ∈ F and define PY|X(A) as

PY|X(A) =
∫

A
fY|X(y|x)dy. (3.54)
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Since the LLR is a random variable its distribution is defined by the measure µL|X

µL|X(A) = PY|X(L−1(A)). (3.55)

Next, we show that for an integrable function h(x) we have
∫

h(x)dµL|1(x) =
∫

h(x)exdµL|−1(x). (3.56)

We write the left-handside of this equation as

∫

h(x)dµL|1(x) =
∫

h(L(y))dPY|1(y) =
∫

h(L(y)) fY|1(y)dy

=
∫

h(L(y))eL(y) fY|−1(y)dy =
∫

h(L(y))eL(y)dPY|−1(y)

=
∫

h(x)exdµL|−1(x). (3.57)

Since we assume that fL|X exists it follows that

fL|X(l|1) = el fL|X(l| − 1). (3.58)

This lemma shows that a memoryless binary channel is fully defined by spec-
ifying fL|X(l|1) since fL|X(l| − 1) can be obtained from fL|X(l|1). The next the-
orem is a generalization of the channel equivalence lemma as defined in [29].

Theorem 6 Let a binary memoryless channel defined by a transition density fY|X and
denote the LLR and corresponding density of LLRs by L and fL|X, respectively. Next,
consider a binary memoryless channel with transition density fL|X and denote its LLR
by L′. The following holds

L′ = L, (3.59)

from which it follows that
fL′ |X(l|x) = fL|X(l|x). (3.60)

Proof 6 By definition of the LLR we can write

L′ = log
fL|X(L|1)

fL|X(L| − 1)
, (3.61)
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and by Lemma 5 we can write

L′ = log
fL|X(L|1)

e−L fL|X(L|1)
= log eL = L, (3.62)

and it follows that fL|X(l|x) = fL′|X(l|x).

This theorem shows that when we consider the set of all fY|X defining a bi-
nary memoryless channel, we can call two channels equivalent if they have the
same density of LLRs. This relation is an equivalence relation and Theorem 6
proofs reflexivity of the relation. From a practical point of view the relevance
of Theorem 6 is that it shows that when we consider the computation of LLRs
as part of the channel, we do not have to recompute LLRs and can just take the
channel output as the LLR.

For a binary memoryless symmetric channel we have the following lemma
which can be found in [29].

Lemma 7 Let a binary memoryless channel be defined by a transition density fY|X
which satisfies

fY|X(y|1) = fY|X(−y| − 1). (3.63)

In this case the density of LLRs satisfies

fL|X(l|1) = el fL|X(−l|1), (3.64)

Proof 7 First, note that for a symmetric channel the following holds

fL|X(l|1) = fL|X(−l| − 1). (3.65)

To see this note that we can write the LLR as

L = log
fY|X(Y|1)

fY|X(Y| − 1)
= log

fY|X(−Y| − 1)

fY|X(−Y|1)
= − log

fY|X(−Y|1)

fY|X(−Y| − 1)
. (3.66)

This shows that the density of L as a function of the random variable Y is equal to
the density of −L as a function of −Y. Now, fL|X(l|1) defines the distribution of L
when X = 1 and the density of Y is by definition fY|X(Y|1). Since the distribution
of Y given X = −1 is defined by fY|X(Y| − 1) = fY|X(−Y|1), we conclude that
fL|X(l|1) = fL|X(−l| − 1). Now, the claim follows from Lemma 5.
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A density of LLRs satisfying (3.64) is called symmetric.
In case the original binary channel is not symmetric we can construct an

equivalent binary channel which is symmetric by using a common source of
randomness at the transmitter and receiver.

Theorem 8 Let a binary memoryless channel be defined by a fY|X and denote the
density of LLRs by fL|X. Next, let B be a uniform distributed binary random variable
taking values in {−1, 1} of which the realization is known at the transmitter and the
receiver. Instead of transmitting X we transmit BX and at the receiver we take the
value of B into account and compute an LLR L′. We can consider L′ as the output of
an equivalent binary symmetric channel defined by an fL′ |X which satisfies

fL′ |X(l|1) = fL′|X(−l| − 1), (3.67)

and
fL′|X(l|1) = el fL′ |X(l| − 1). (3.68)

Proof 8 In case we transmit BX instead of X the LLR is given by

L′ = log

(

fY|X(y|1)

fY|X(y| − 1)

)B

= B log
fY|X(y|1)

fY|X(y| − 1)
. (3.69)

Let fL′|X,B=b denote the density of L′ given X and B = b. We can write fL′|X as

fL′|X(l|x) =
1
2

fL′|X,B=1(l|x) +
1
2

fL′ |X,B=−1(l|x). (3.70)

Now, note that when B = 1, we just transmit X on the channel and

fL′|X,B=1(l|x) = fL|X(l|x). (3.71)

In case B = −1 the value of X is flipped before transmission. Moreover, the value of
the LLR is negated at the receiver. Hence we have

fL′|X,B=−1(l|x) = fL|X(−l| − x), (3.72)

from which it follows that

fL′|X(l|x) =
1
2

fL|X(l|x) +
1
2

fL|X(−l| − x). (3.73)

From this it is clear that fL′|X(l|1) = fL′|X(−l| − 1) and fL′|X(l|1) = el fL′|X(l| − 1)

follows from the fact that fL|X(l|1) = el fL|X(l| − 1) by Lemma 5.

This idea is introduced in [7] under the name of channel adapters and it is related
to ensembles of binary coset codes.
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3.4.2 Equivalent Binary Channels for Modulation Maps

Before we consider error-control coding, we derive the properties of the equiv-
alent binary channels resulting from Φhybrid and the hybrid decoding scheme
for transmission on the AWGN channel. For this purpose we first derive the
properties of the binary channel resulting from Φspm with multistage decod-
ing. Next, we consider the equivalent binary channels resulting from Φgray
with parallel and independent decoding. Finally, we combine these results
and consider Φhybrid.

Equivalent Channels for Φspm

Let X1, . . . , Xd denote a tuple of uniform i.i.d. bits and let a channel input Z for
the AWGN channel be generated by Φspm. The channel output Y is given by

Y = Z + N = Φspm(X1, . . . , Xd) + N =
d

∑
i=1

αiXi + N, (3.74)

where N is Gaussian noise with variance σ2. Without loss of generality we
assume that the decoding sequence for multistage decoding is X1, X2, . . . , Xd.
While decoding Xl at level l the values of X1, . . . , Xl−1 are assumed to be
known. We can write the channel for Xl as

Y = αlXl + c′l + N′
l , (3.75)

where c′l is summarizes the values of the known bits X1, . . . , Xl−1 and is defined
as

c′l =
l−1

∑
i=1

αiXi. (3.76)

The channel for Xl is disturbed by additive noise N ′
l

N′
l =

d

∑
i=l+1

αiXi, (3.77)

and the density of N ′
l is given by

fN′
l
(n) =

1
2d−l ∑

xl+1

. . . ∑
xd

fN (n− αl+1xl+1 − . . .− αdxd) . (3.78)
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Now, we can cancel the contribution of c′l from the channel output which gives
us a new channel output Y′

Y′ = Y − c′l = αlXl + N′
l , (3.79)

and this equivalent channel is defined by a transition density fY′|Xl

fY′ |Xl
(y|xl) = fN′

l
(y− αlxl). (3.80)

We compute an LLR Ll for Xl based on Y′

Ll = log
fY′ |Xl

(Y′|1)

fY′|Xl
(Y′| − 1)

. (3.81)

Since fN′
l
(n) = fN′

l
(−n) the transition density fY′|Xl

(y|xl) defines a symmetric
channel and the density of LLRs fLl |Xl

defining the channel for Xl is symmetric.

Equivalent Channels for Φgray

Let a channel input for the AWGN channel be generated by Φgray

Y = Z + N = Φgray(X1, . . . , Xd) + N. (3.82)

When we use parallel and independent decoding the channel for a bit Xl is
defined by the following transition density

fY|Xl
(y|xl) =

1
2d−1 ∑

x1

· · · ∑
xl−1

∑
xl+1

· · ·∑
xd

fN
(

y−Φgray(x1, . . . , xd)
)

. (3.83)

The use of Φgray provides a set of d equivalent binary channels and these chan-
nels are not necessarily symmetric. Nevertheless an LLR for Xl is computed
as

Ll = log
fY|Xl

(Y|1)

fY|Xl
(Y| − 1)

, (3.84)

and let fLl |Xl
define the density of LLRs for Xl. We apply Theorem 8 to make the

channel for each of the bits symmetric. For this purpose let B1, . . . , Bd denote a
set of uniform i.i.d. random bit variables of which the realization is known at
the transmitter and the receiver. A channel input is generated as

Z = Φgray(B1X1, . . . , BdXd). (3.85)
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Now, an LLR L′l is computed for Xl as

L′l = Bl log
fY|Xl

(Y|1)

fY|Xl
(Y| − 1)

, (3.86)

and the density of L′l which we denote by fL′l |Xl
defines a symmetric channel.

In a BICM setting the assignment of the bits as the input of the modulation
map is randomized as well. This renders the channel for each of the bits the
same and the channel for a bit Xl is defined by a density of LLRs fL′|Xl

fL′|Xl
(l|xl) =

1
d

d

∑
i=1

fL′i|Xi
(l|xl), (3.87)

which in turn defines a symmetric channel.

Equivalent Binary Channels for Φhybrid

Consider the generation of channel inputs for the AWGN channel by Φhybrid

Y = Φhybrid(X1, . . . , Xd) + N

=
d1

∑
i=1

αiXi + β · 1
√

EPAM,d2

·
d1+d2

∑
i=d1+1

(

d1+d2

∏
j=i

Xj

)

2i−1 + N. (3.88)

To derive the properties of the equivalent binary channel for X1, . . . , Xd1 note
that for these bits Xd1+1, . . . , Xd1+d2 generate a uniformly spaced PAM constel-
lation which acts as noise. However, as noise the mapping from bits to constel-
lation symbols is irrelevant. Hence, for a bit Xl with l = 1, . . . , d1 the channel
takes the form

Y = αlXl + c′l + N′
l , (3.89)

where c′l is summarizes the values of the decoded bits X1, . . . , Xl−1. Further-
more, the channel for Xl is disturbed by additive noise N ′

l

N′
l =

d1

∑
i=l+1

αiXi + β · 1
√

EPAM,d2

·
d1+d2

∑
i=d1+1

2i−1. (3.90)

From which we conclude that the equivalent binary channel is defined by a
transition density given by (3.80) and LLRs are computed by (3.81). Further-
more, the equivalent binary channels for X1, . . . , Xd1

are symmetric.
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Once X1, . . . , Xd1
are decoded they can be cancelled from the channel out-

put and we are in the same setting as if channel inputs had been generated by
a scaled version of Φgray.

3.4.3 Binary LDPC Codes

We do not give an extensive overview of LDPC codes and their design. We
refer to [29] for more details. Furthermore, in [39] we discuss the design of
LDPC codes for modulation maps of the form Φspm in more detail.

An LDPC code is a linear block code which is defined by a low-density
parity-check matrix H ∈ GF(2)(n−k)×n, where n is the length of a codeword
and k the number of source bits which is mapped to a codeword. Each code-
word x satisfies Hx = 0. An LDPC code is conveniently represented by a
Tanner graph [30]. The Tanner graph is a bipartite graph consisting of variable
nodes and check nodes. Each variable nodes represents a bit of a codeword
and each check node a row of the parity-check matrix. An ensemble of LDPC
codes can be defined by a degree distribution pair (λ, ρ) where λ(x) and ρ(x)
define the distribution of variable nodes and check nodes, respectively

λ(x) = ∑
i

λixi−1 ρ(x) = ∑
i

ρixi−1, (3.91)

where λi denotes the fraction of edges connected to variable nodes of degree i
and ρi denotes the fraction of edges connected to check nodes of degree i. In
terms of the degree distribution pair (λ, ρ) the design rate r of the code is given
by

r = 1−
∫ 1

0 ρ(x)dx
∫ 1

0 λ(x)dx
. (3.92)

The analysis and design of LDPC codes is greatly simplified for symmetric
channels. In case the channel is a symmetric channel and the decoder satisfies
certain symmetry conditions, the performance of the decoder is independent of
the transmitted codeword. We can restrict the analysis of the decoding process
to the case where the all-zeros codeword is transmitted. In the previous sec-
tion we have shown that for the modulation maps we consider, the equivalent
binary channels are either symmetric or we can make them symmetric.
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SNR [dB] 11.76 17.99 24.07 30.10
AWGN capacity 2.0 3.0 4.0 5.0

d 3 4 5 6
I(Z; Y) 1.879 2.819 3.784 4.765

IPID 1.853 2.792 3.755 4.736

Table 3.2: Parameters of the PAM constellations for the PAM-LDPC codes.

3.5 Design Examples and Numerical Results

In this section we provide several numerical examples. First, we design LDPC
codes for the equivalent binary channel resulting from Φgray for several con-
stellation sizes and target rates. We refer to these codes as M-PAM-LDPC codes
and we show that these codes can perform close to the constrained constella-
tion capacity limit. Second, we design LDPC codes for the equivalent channels
resulting from several Φhybrid and the proposed multistage decoding scheme.
We refer to these codes as shaped M-PAM-LDPC codes. With these codes the
gap to the capacity of the AWGN channel due to shaping can be bridged.

3.5.1 PAM-LDPC Codes

We consider transmission on the AWGN channel at rates in the range of 2 bit/use
to 5 bit/use and the parameters of the PAM constellation generated by Φgray
we use are given in Table 3.2. The table gives the SNRs at which a target rate
of 2, 3, 4 and 5 bit/use is achieved. Furthermore, the table specifies the value
of d used to generate the signal constellation and the constrained constellation
capacity. Finally, the table also gives IPID and we observe that the loss with
respect to the constrained constellation capacity is only small.

We have designed LDPC codes for the equivalent binary channels and the
parameters of the codes are given in Table 3.3. The table defines the degree
distributions and the design rate r of the LDPC codes. The threshold is given
by SNR∗ and it is close to the target SNR for which we have designed the codes.
The overall transmission rate R = rd is given also and all codes achieve a low
asymptotic BER while the rate is higher than 99.7% of the achievable rate IPID.

We perform a Monte Carlo simulation of the codes where we choose a block
length of N = 20000 and N = 100000 channel input symbols, respectively. The
length n of the LDPC codeword is given by n = Nd. The simulation results
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Code d = 3 d = 4 d = 5 d = 6
λ2 0.154145 0.145337 0.1407388 0.137750
λ3 0.156311 0.151913 0.1492723 0.147196
λ6 0.003218 0.004692 0.0065441 0.010026
λ7 0.200050 0.194657 0.1909628 0.185561

λ20 0.0627174 0.0837469 0.110721
λ21 0.180790 0.136561 0.1167630 0.090856
λ22 0.022166

λ100 0.283320 0.304124 0.3119721 0.317890
ρ15 0.748250
ρ16 0.251750
ρ19 0.006943
ρ20 0.993057
ρ24 0.25675
ρ25 0.74325
ρ29 0.37185
ρ30 0.62815

r 0.616 0.696 0.749 0.787
SNR∗ [dB] 11.77 18.00 24.07 30.11

R = dr 1.848 2.784 3.745 4.722
Table 3.3: Degree distributions for the M-PAM-LDPC codes.

of the codes are shown in Figure 3.10 and Figure 3.11. The figures show the
bit-error rate performance of the codes for the two block lengths. Furthermore,
the figures indicate the value of the SNR where the AWGN capacity is equal to
the transmission rate. The SNR limit required to achieve the transmission rate
with BICM (IPID) is shown also.

All codes perform reasonably close to the IPID limit. A BER< 10−5 is achieved
within 0.7 dB of IPID for N = 20000 and within 0.4 dB for N = 100000. How-
ever, the gap to the capacity of the AWGN channel is substantial. To bridge
this gap, we require shaping of the signal constellation.
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d = 3, N = 2 · 104

d = 3, N = 105

d = 4, N = 2 · 104
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Figure 3.10: Simulation results for M-PAM-LDPC codes on the AWGN channel
for target rates 2 bit/use and 3 bit/use.
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Figure 3.11: Simulation results for M-PAM-LDPC codes on the AWGN channel
for target rates 4 bit/use and 5 bit/use.
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Code d1 = 2, d2 = 2 d1 = 2, d2 = 3
C1 C2 C C1 C2 C

λ2 0.235819 0.264719 0.131359 0.228782 0.259637 0.128759
λ3 0.189501 0.196177 0.144553 0.181581 0.186984 0.141871
λ5 0.038020
λ6 0.031272 0.0711654
λ7 0.157022 0.164893 0.176631 0.199624 0.1014825
λ8 0.045821 0.033304 0.157238 0.025225
λ9 0.0382066
λ13 0.0132644
λ14 0.000707
λ19 0.017823
λ20 0.044399 0.122066 0.066201 0.123820
λ21 0.109676 0.094364 0.029331 0.0838960
λ22 0.082780
λ23 0.102322 0.1084474
λ24 0.018804 0.0098793
λ100 0.217762 0.201018 0.292947 0.227215 0.200604 0.3030290
ρ5 0.696302 0.366039
ρ6 0.771165 0.303698 0.214057 0.633961
ρ7 0.228835 0.785943
ρ24 0.558954
ρ25 0.441046
ρ31 0.37587
ρ32 0.62413

r 0.263 0.190 0.741 0.307 0.223 0.797
SNR∗ [dB] 10.79 11.02 11.77 16.20 16.65 18.01

R 1.935 2.921

Table 3.4: Parameters of the shaped M-PAM-LDPC codes for d2 = 2 and d2 =
3.

3.5.2 Shaped PAM-LDPC Codes

We design LDPC codes for the numerically optimized Φhybrid of Section 3.3
corresponding to d1 = 2. The parameters of the codes are given in Table 3.4
and Table 3.5.

For each of the target rates we have first designed C which is the code used
in the BICM setting. For a target rate of 2 bit/use and 3 bit/use we choose a
channel input block length of 2 · 105. For 4 bit/use and 5 bit/use we choose



i

i

“thesis” — 2008/6/12 — 20:57 — page 91 — #101
i

i

i

i

i

i

3.5 Design Examples and Numerical Results 91

Code d1 = 2, d2 = 4 d1 = 2, d2 = 5
C1 C2 C C1 C2 C

λ2 0.251874 0.278142 0.118440 0.252996 0.269500 0.119845
λ3 0.188163 0.187461 0.148027 0.186016 0.182617 0.142770
λ6 0.025427 0.033295 0.022921
λ7 0.171387 0.166436 0.199406 0.186855 0.163103 0.180233
λ8 0.033614 0.015486
λ18 0.080523 0.084243
λ19 0.055880 0.145201 0.066506
λ20 0.030448
λ21 0.109757 0.126781 0.098216
λ22 0.047746
λ23 0.129713
λ25 0.059848
λ100 0.197459 0.206131 0.320171 0.201418 0.206284 0.309660
ρ5 0.067603 0.82170 0.074365 0.58550
ρ6 0.932397 0.17830 0.925635 0.41450
ρ48 0.67369
ρ49 0.32631
ρ57 0.034591
ρ58 0.965409

r 0.255 0.188 0.863 0.254 0.205 0.886
SNR∗ [dB] 17.78 20.98 24.07 20.68 23.06 30.10

R 3.895 4.889
Table 3.5: Parameters of the shaped M-PAM-LDPC codes d2 = 4 and d2 = 5.

a channel input block length of 105. The code rates for C1 and C2 are chosen
slightly lower than the capacity of the equivalent binary channel such that all
codes achieve a low BER at approximately the same SNR.

The simulation results are shown in Figure 3.12 and Figure 3.13. All
schemes achieve a low BER within 0.5 dB of I ′(Y; Z). Furthermore, the dis-
tance to the capacity of the AWGN channel is within 0.7 dB for all schemes.
Moreover, the schemes all beat the uniform signaling limit for a signal constel-
lation with a uniform spacing and uniform distribution on the constellation
symbols. The schemes achieve a low BER at around the same SNR where the
PAM-LDPC codes achieve a low BER. However, the transmission rate of the
shaped PAM-LDPC codes is higher.
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Figure 3.12: Simulation results for shaped M-PAM-LDPC codes on the AWGN
channel for target rates 2 bit/use and 3 bit/use.
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Figure 3.13: Simulation results for shaped M-PAM-LDPC codes on the AWGN
channel for target rates 4 bit/use and 5 bit/use.
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Figure 3.14: Summary of the power and bandwidth efficiency of the coding
schemes for N = 105 and BER=10−5.

3.6 Conclusions and Final Remarks

A summary of the results is given in Figure 3.14 which shows the power-rate
plane of the AWGN channel. The figure shows the capacity of the AWGN chan-
nel together with the constrained constellation capacity of a 256-PAM constel-
lation. Furthermore, the rate achieved by each of the schemes presented in this
chapter are shown also. We have plotted the SNR where each scheme achieves
a BER ≤ 10−5. Each of the M-PAM-LDPC codes operates close to the capac-
ity of the 256-PAM limit. Furthermore, the shaped M-PAM-LDPC all beat this
limit and operate close to the capacity of the AWGN channel.

In this chapter we considered coded modulation on the AWGN channel
and introduced a scheme which is able to perform close to the capacity of the
AWGN channel. The scheme combined with binary LDPC codes is able to
approach the capacity of the AWGN channel for several spectral efficiencies
very closely.



i

i

“thesis” — 2008/6/12 — 20:57 — page 95 — #105
i

i

i

i

i

i

Chapter 4

Symmetric Channels and
Coded Modulation

4.1 Introduction

In this chapter we characterize channel symmetry for a broad class of memo-
ryless channels. This characterization unifies several notions of channel sym-
metry. Furthermore, we give an application of the developed theory to coded
modulation. We show how to devise coded modulation schemes for channels
with additive noise. This in such a way that the original coding problem is
transformed into a coding problem for a set of symmetric channels.

Channel symmetry is e.g. defined in [28] for discrete memoryless channels
(DMCs). For symmetric DMCs mutual information is maximized for a uni-
form distribution on the channel input alphabet. A related concept of channel
symmetry for DMCs is a regular channel which is defined in [42]. A regular
channel is an algebraic characterization of the symmetry of DMCs and it can
be shown that a regular channel is symmetric in the Gallager sense [43]. A
major contribution of [42] is that it shows that linear codes over finite fields
can be used to achieve capacity on regular channels. This generalizes the fact
that binary linear codes can be used to achieve capacity on binary memoryless
symmetric channels.

Binary sparse graph codes such as low-density parity-check (LDPC) codes
are capable of achieving a near-capacity performance on several binary-input
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output-symmetric (BIOS) channels [2], [3], [26]. The analysis of message pass-
ing decoders satisfying certain symmetry conditions can be restricted to the
all-zeros codeword for symmetric channels. This greatly simplifies the analy-
sis and design of LDPC codes.

For channels with a capacity significantly larger than one the use of binary
inputs can lead to a loss in rate, because the channel capacity might allow trans-
mission at higher rates. To achieve higher rates for power and bandwidth effi-
cient communication, one can opt for non-binary codes as in [12]. An alterna-
tive is to use codes for which the codeword symbols are taken from a relatively
small alphabet and map groups of codeword symbols to channel inputs. Sev-
eral coding techniques apply this approach and we refer to these techniques as
coded modulation.

A well-known coded modulation strategy is multi-level coding (MLC) with
multi-stage decoding (MSD) or parallel-and-independent decoding (PID) [8],
[23]. With MLC-MSD a set of codes is used at the transmitter and at the receiver
successive decoding of the codes is used. One can approach the capacity of the
channel with maximum-likelihood decoding of the individual codes. The use
of MLC-PID is suboptimal in the sense that the achievable information rate is
less than the capacity of the channel. However, the loss might only be small
and the codes can be decoded in parallel. Moreover, one can use a single code
at the transmitter which naturally leads to bit-interleaved coded-modulation
(BICM) [9] when binary codes are used.

From a coding point of view MLC and BICM reduce the problem of achiev-
ing capacity on a channel with a large input alphabet to achieving capacity on
a set of equivalent channels with a smaller input alphabet. However, these
equivalent channels are not necessarily symmetric.

In this chapter we characterize channel symmetry for memoryless channels
with a discrete input alphabet X and a general output space Y . The channels
we consider are defined by a set of functions { fi} for i = 1, . . . , |X |

fi : Y 7→ R. (4.1)

For DMCs we can identify these functions with the conditional transition prob-
abilities of the channel and for channels with outputs in R these functions are
the conditional transition density functions of the channel. Our starting point
to define channel symmetry is information theoretic. We establish a set of con-
ditions such that mutual information is maximized for a uniform distribution
and call such a channel symmetric. We will see that we can express these con-
ditions in terms of the existence of algebraic groups acting on the set { f i}.
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The motivation of the work we present is its practical application. We show
how to construct coded modulation schemes for high spectral efficiencies lead-
ing to symmetric equivalent channels. The outline of this chapter is as fol-
lows. In Section 4.2 we introduce preliminary concepts and the notation used
throughout the chapter . In Section 4.3, we revisit the concept of channel sym-
metry and characterize it for general channels. We give an application to coded
modulation in Section 4.4 and end with conclusions in Section 4.5.

4.2 Preliminaries

In this section we review some basic concepts from information theory and
give an overview of several notions of channel symmetry. Furthermore, we
review some concepts from algebra and geometry which are used in later sec-
tions.

4.2.1 Information Theory

Channel Symmetry for DMCs

Consider a channel where the channel input X takes values in the setX and the
channel output Y takes values in the set Y . A DMC is defined as a memoryless
channel where both X and Y are discrete sets. In this case the channel is spec-
ified by a transition probability assignment fY|X(y|x). By definition fY|X(y|x)
is the probability of receiving y when x is transmitted.

For a DMC the average mutual information between the channel input and
channel output is defined as

I(X; Y) = ∑
x∈X

∑
y∈Y

fY|X(y|x) fX(x) log2
fY|X(y|x)

fY(y)
, (4.2)

where fX(x) denotes the probability that the channel input is chosen as x. Fur-
thermore, fY(y) is given by

fY(y) = ∑
x′∈X

fY|X(y|x′) fX(x′). (4.3)

The capacity of the channel is defined as the maximum mutual information
between X and Y where the maximization is over all input distributions.

C = max
fX

I(X; Y) (4.4)



i

i

“thesis” — 2008/6/12 — 20:57 — page 98 — #108
i

i

i

i

i

i

98 Chapter 4. Symmetric Channels and Coded Modulation

A logical way to define channel symmetry is to relate it to the properties
of the fX achieving the capacity of the channel. One property we wish sym-
metric channels to share is that capacity is achieved when fX is the uniform
distribution. In Gallager [28] the path to define channel symmetry is as fol-
lows. First, conditions for a fX to maximize I(X; Y) can be derived as in the
following theorem.

Theorem 9 (Theorem 4.5.1 in [28]) A set of necessary and sufficient conditions on
a probability assignment fX(x) to achieve capacity of the DMC with transition prob-
abilities fY|X is that for some number C,

I(X = k; Y) = C; all x with fX(x) > 0
I(X = k; Y) ≤ C; all x with fX(x) = 0 (4.5)

Proof 9 The proof follows from the convexity of mutual information with respect to
the input distribution and can be found in [28].

This theorem holds also for channels with a discrete input alphabet and out-
puts from R

n or C
n. Next, a symmetric DMC is defined as follows.

Definition 1 ([28], pp. 94) A DMC is defined to be symmetric if the set of outputs
can be partitioned into subsets in such a way that for each subset the matrix of tran-
sition probabilities (using inputs as rows and outputs of the subset as colums) has the
property that each row is a permutation of each other row and each column (if more
than 1) is a permutation of each other column.

Now, we can show that if a DMC is symmetric a uniform fX(x) achieves ca-
pacity.

Theorem 10 (Theorem 4.5.2 in [28]) For a symmetric DMC, capacity is achieved
by using the inputs with equal probability.

Proof 10 The proof can be found in [28].

Channel Symmetry for channels with outputs in Rn or Cn

In case Y = Rn or Y = Cn, we assume that the channel is defined by a transi-
tion probability density function fY|X(y|x). In this case fY|X(y|x) is the density
of the channel output y conditioned on the channel input x. For channels with
outputs in Rn the mutual information between X and Y is defined as

I(X; Y) = ∑
x∈X

fX(x)
∫

Rn
fY|X(y|x) log2

fY|X(y|x)

fY(y)
dy. (4.6)
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A channel with binary inputs and outputs in R is called symmetric if the chan-
nel transition probability density function satisfies [41]

fY|X(y|0) = fY|X(−y|1). (4.7)

For a channel defined by a fY|X(y|x) satisfying this relation (4.5) holds and
capacity is achieved for a uniform distribution on the channel input. BIOS
channels play a crucial role in the analysis and design of iterative decoding
methods for binary sparse graph codes [26]. This has been one of the main
motivations for the work presented in this chapter and some implications are
given in Section 4.4 when we discuss applications.

Channel and Mutual Information in an Abstract Setting

For the purpose of defining channel symmetry irrespective of the channel out-
put space Y , we can cast mutual information in an abstract measure theoretical
setting. We will derive most of our results without resorting to measure theory.
However, we borrow some notational aspects which are common in measure
theory.

We consider channels with inputs from a finite discrete set {0, 1, . . . , N− 1}
and outputs from an output space Y . The output space will either be a finite
discrete set, R or C. As before let fX define the distribution on the channel
inputs and let the channel defined by a set of functions

fi : Y → R, (4.8)

for i = 1 to N and fi satisfies
∫

Y
fi(y)dy = 1. (4.9)

In case the channel output space is a finite discrete set the f i define the chan-
nel transition probabilities and we interpret the integral as a sum. In case the
channel output space is R or C the fi are the channel transition densities. We
write mutual information for the output spaces we consider as

I(X; Y) = ∑
i∈X

PX(x)
∫

Y
fi(y) log2

fi(y)

∑j∈X PX(j) f j(y)
dy, (4.10)

and again, depending on the context we interpret the integral as a sum.
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100 Chapter 4. Symmetric Channels and Coded Modulation

4.2.2 Geometry and Algebra

In this section we review some concepts from geometry and algebra which we
use to define channel symmetry. These concepts can be found in textbooks on
algebra and geometry [44], [45].

Metric space and isometry

Let F (Y) denote the set of all bijective functions from Y to Y . We equip the
channel output space Y with a metric d. The resulting metric space is denoted
by (Y , d). In the case of a DMC, Y is a discrete set and a natural metric to use
is the discrete metric δ(i, j) which is defined as

δ(i, j) =

{

0 i 6= j
1 i = j.

(4.11)

In later sections we consider the case that

Y = R
n,

and the metric we consider is the Euclidian metric

de(v, w) =

√

(v−w)T (v−w) v, w ∈ R
n. (4.12)

We are interested in maps from Y to Y which preserve distance.

Definition 2 An isometry φ of a metric space (Y , d) is a bijective map

φ : Y → Y , (4.13)

which preserves distance

d (φ(v), φ(w)) = d (v, w) ∀v, w ∈ Y . (4.14)

We denote the set of all isometries of (Y , d) by I(Y). Let A ⊆ Y and denote
the image of A under the isometry φ by

φA = {y ∈ Y : y = φ(x), x ∈ A} . (4.15)

In case φA = A we call φ an symmetry of A. Next, we denote the set of all
symmetries of A by SA

SA = {φ ∈ I(Y) : φA = A} . (4.16)
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Groups and Group Actions

The set SA with composition as an operation constitutes a group. To see this
note that the identity map is a member of SA. Furthermore, if φA = A then
φ−1A = A. Associativity follows from the fact that composition of functions is
associative. The group SA is called the symmetry group of A. The set F (Y) is
a group also and SA is a subgroup of F (Y).

Example 2 Let (Y , δ) be a discrete metric space where Y ⊆ N. In this case the
isometry group is given by the group of permutations on Y .

It is important to distinguish between the abstract group and a particular
form it takes on a set of invertible functions. For this the concept of homomor-
phism and group action are very useful.

Definition 3 Let G1 and G2 be groups. A homomorphism is a map ψ : G1 7→ G2 for
which ψ(ab) = ψ(a)ψ(b) for all a and b in G1.

The map ψ has to respect the group law but is not assumed to be injective or
surjective.

Definition 4 A group action of a group G on Y is a homomorphism from G into
F (Y).

These definitions formalize the notion of a symmetry group acting on Y or one
of its subsets. Finally, a group action by a group G acting on a set A is called
transitive if for any a, b ∈ A there exists a g ∈ G such that g · a = b.

To define channel symmetry we use a group action on the space of proba-
bility distributions defined on Y . Now, let f be a function satisfying (4.8) and
(4.9) and consider the action of an isometry φ on f . We define φ f as

φ f : x 7−→ f (φ−1(x)) (4.17)

With this definition a group acting on Y induces a group action on the set of
probability distributions. To show this let g1 and g2 be members of the group
acting on Y and consider g1g2 acting on f

(g1g2) f (x) = f ((g1g2)
−1x) = f ((g−1

2 g−1
1 )x)

= f (g−1
2 (g−1

1 x)) = (g2 f )(g−1x) = (g1(g2 f ))(x). (4.18)

From this we see that we have the homomorphism required for the group ac-
tion. Next, consider a set of functions { f0, . . . , fN−1} where

fi : Y 7→ R for i = 0, . . . , N − 1. (4.19)
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We define the symmetry group of { f0, . . . , fN−1} as the set of all φ ∈ I(Y)
which fix { f0, . . . , fN−1} as a set. In the next sections we will see that we can
characterize channel symmetry in terms of the existence of these symmetry
groups.

Isometry and Integration

Isometries respect the geometrical properties of objects they are acting on and
this has consequences when we consider integration.

Proposition 11 Let φ ∈ I(Y) and let B ⊂ Y . For a function f : Y 7→ R we have
∫

B
f (y)dy =

∫

φB
(φ f )(y)dy. (4.20)

Proof 11 For DMCs the isometries of Y are the permutations and the proof is straight-
forward. For channels with outputs in R or C a proof can be constructed by using an
explicit form of the isometries of R or C. In a general measure theoretical setting a
proof can be given for measures constructed from the metric of the underlying metric
space.

Corollary 12 In case B = Y we have
∫

Y
(φ f )(y)dy =

∫

Y
f (y)dy. (4.21)

4.3 Memoryless Discrete-Input Symmetric
Channels

Our starting point in defining channel symmetry is mutual information. For
discrete memoryless channels which are symmetric in the Gallager sense, mu-
tual information is maximized for a uniform distribution on the channel in-
puts. This is the property we wish a symmetric channel to have and we use
it to define channel symmetry. One of the features that this extension shares
with the conventional definition is that channel symmetry will be a sufficient
condition for a uniform distribution to maximize the mutual information be-
tween the channel input and output. The following proposition is useful for
this purpose.
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Proposition 13 Consider a memoryless channel with input alphabetX = {0, 1, . . . , N−
1}. Furthermore, the channel is defined by a sequence of f i for i = 0, 1, . . . , N − 1.
The maximum value of I(X; Y) is achieved for a uniform distribution on the channel
input if and only if for each i, j ∈ X we have

∫

Y
fi(y) log2

fi(y)

∑k fk(y)
dy =

∫

Y
f j(y) log2

f j(y)

∑k fk(y)
dy (4.22)

Proof 12 The proposition is a more general version of Theorem 9 and the proof follows
from the Karush-Kuhn-Tucker (KKT) conditions for convex functions.

4.3.1 Group Characterization of Channel Symmetry

Next, we investigate when equality in (4.22) occurs. For this it is instructive to
first consider a channel with binary inputs. In this case (4.22) reduces to

∫

Y
f0(y) log2

f0(y)

f0(y) + f1(y)
dy =

∫

Y
f1(y) log2

f1(y)

f0(y) + f1(y)
dy. (4.23)

Suppose we can find an isometry φ of Y acting on f0 log2
f0

f0+ f1
such that

φ

(

f0 log2
f0

f0 + f1

)

(y)

= (φ f0)(y) log2
(φ f0)(y)

(φ f0)(y) + (φ f1)(y)
= f1(y) log2

f1(y)

f0(y) + f1(y)
. (4.24)

Now, from Proposition 11 it follows that we will have equality in (4.23). For
this isometry we would have that

φ f0 = f1, (4.25)

and,
φ { f0, f1} = { f0, f1} , (4.26)

which implies that
φ f1 = f0. (4.27)

Combining (4.25) and (4.27), we observe that

φ2 = I, (4.28)



i

i

“thesis” — 2008/6/12 — 20:57 — page 104 — #114
i

i

i

i

i

i

104 Chapter 4. Symmetric Channels and Coded Modulation

where I denotes the identity map. Hence if there exists an isometry of the
metric space such that φ f0 = f1 and φ2 = I, we have equality and mutual in-
formation is maximized for a uniform distribution on the channel input. Such
an isometry generates a cyclic subgroup of order 2 of I(Y). We can extend this
to channels with a larger input alphabet as follows.

Theorem 14 Consider a memoryless channel with input alphabetX = {0, 1, . . . , N−
1} and output metric space (Y , d). Furthermore, the channel is defined by a set of func-
tions { fi} for i = 0, . . . , N− 1. If there exists a transitive symmetry group S of { f i},
the maximum value of I(X; Y) is achieved for a uniform distribution on X.

Proof 13 Since S is a symmetry group of { fi} it follows that any φ ∈ S fixes { fi} as
a set. Furthermore, since S is transitive, { fi} is in the orbit of any f ∈ { fi} under S .
Hence we can find a φk,l ∈ S such that

φk,l fk = fl , (4.29)

for any k, l ∈ X . Now, we can write for any l ∈ X
∫

Y
fl(y) log2

fl(y)

∑j f j(y)
dy =

∫

Y
(φk,l fk)(y) log2

(φk,l fk)(y)

∑j f j(y)
dy

=
∫

Y
(φk,l fk)(y) log2

(φk,l fk)(y)

∑j(φk,l f j)(y)
dy =

∫

φ−1
k,l Y

fk)(y) log2
fk(y)

∑j f j(y)
dy

=
∫

Y
fk(y) log2

fk(y)

∑j f j(y)
dy, (4.30)

where we have made use of Proposition 11. Since this holds for any k, l ∈ X we will
have equality in (4.22) for any k, l ∈ X .

4.3.2 Representation of Cyclic Symmetry Groups in Rn

We are mainly concerned with channels with a binary input and outputs from
Rn. We derive some properties in this section which are applied in the next
section when we consider applications to coded modulation.

The group of isometries of the metric space (Rn, de) is called the Euclidian
group and we denote this group by E. Any element of the Euclidian group can
be represented by [45]

φ : R
n → R

n

x 7−→ Ax + b, (4.31)
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where A ∈ Rn×n is an orthogonal matrix and b ∈ Rn. Now, let N be an integer.
A subset of transitive group actions on Rn are defined by transformation of the
form

φ : x → Ax +
(

In −AN−1
)

b, (4.32)

where A ∈ Rn×n is an orthogonal matrix for which satisfies AN = In, b ∈ Rn

and In is the identity matrix of dimension n. These transformations generate a
cyclic group of order N.

4.3.3 Channel Symmetry for Channels with a Binary Input
In this section we specialize some of the results for channels with binary inputs
and outputs from Rn and show that the notion of channel symmetry defined
in the previous section coincides with the notion of BIOS channels.

BIOS Channels

We define a BIOS channel as follows

Definition 5 A BIOS channel is a memoryless channel with input alphabet X =
GF(2) and output alphabet Y = Rn defined by two functions f0 and f1 related by an
isometry of Rn

φ f0 = f1, (4.33)

where φ2 = I.

Transformations given by (4.32) with N = 2 satisfy φ2 = I and we can write

φ : x → Ax + (In −A) b, (4.34)

where A is a matrix for which A2 = In and b ∈ Rn. Since A2 = In, A is an
orthogonal symmetric matrix. Moreover any real symmetric matrix is diago-
nizable by an orthogonal matrix. Hence A has the form

A = QSQT, (4.35)

where Q is an orthogonal matrix and S is a diagonal matrix with entries equal
to 1 or −1. From this we conclude that we can write φ as

φ : x 7−→ QSQT (x− b) + b (4.36)
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Example 3 Consider a memoryless channel with a binary input and outputs from R.
We have defined a binary-input output-symmetric channel as a channel for which the
transition density satisfies

φ fY|X(y|0) = fY|X(y|1), (4.37)

where φ is an isometry for which φ2 = I. In this case the nontrivial isometries are of
the form

φ : x 7−→ −x + b, (4.38)

where b ∈ R. For b = 0 we have the conventional definition of a binary-input output-
symmetric channel.

fY|X(y|0) = fY|X(−y|1), (4.39)

Log-likelihood Ratio and Densities

In case the channel input is binary the log-likelihood ratio (LLR) is defined as

L(y) = log
f0(y)

f1(y)
. (4.40)

The LLR is a sufficient statistic to make the decision on the transmitted bit.
Many decoders of binary error-correcting codes use log-likelihood ratios dur-
ing the decoding process. A good example is the message-passing decoder
which is for instance used to decode LDPC codes. To analyze the performance
of the decoders, we are interested in the distribution of the LLRs. For sym-
metric channels the distribution of LLRs satisfies some convenient properties
which we will derive in this section for symmetric channels. As a random vari-
able the LLR is a measurable function

L : Y 7−→ R. (4.41)

We are interested in the distribution of this random variable conditioned on
the channel input. Let µL|0 and µL|1 define a probability measure on R defin-
ing the distribution of the LLR conditioned on the transmission of a 0 and 1,
respectively. This measure is induced by L and defined as

µL|0(A) = PY|0
(

L−1(A)
)

, (4.42)

where PY|0 defines the channel and denotes a measure on the channel output
space given that a zero is transmitted. This measure is induced by the channel
transition density.
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In [26] a distribution F is defined to be symmetric if it satisfies:
∫

R

h(x)dF(x) =
∫

R

e−xh(−x)dF(x), (4.43)

for any h(x) for which the integral exists. In a similar fashion we define µL|0 to
be symmetric if it satisfies

∫

R

h(x)dµL|0(x) =
∫

R

e−xh(−x)dµL|0(x), (4.44)

Theorem 15 [Symmetry of distributions of output-symmetric channels]: Con-
sider a binary-input output-symmetric channel with output space Y defined by an f0
and f1. Conditioned on the transmission of a 0 the measure defining the distribution
of log-likelihood ratios is symmetric.

Proof 14 We give a sketch of the proof. First, note that we have the following basic
properties of the log-likelihood ratio

f0(y) = eL(y) f1(y), (4.45)

and,

L(y) = log
f0(y)

f1(y)
= log

φ f1(y)

φ f0(y)
= − log

φ f0(y)

φ f1(y)
= −φL(y). (4.46)

Now, consider a measurable h for which
∫

hdµL|0 exists. Furthermore, we assume
that PY|0 and PY|1 are absolutely continuous with respect to some measure µd. For
many channels this measure is related to the underlying metric space. In the case that
Y = Rn, µd is the Lesbegue measure. In this case we can write,

∫

R

h(x)dµL|0(x) =
∫

Y
h (L(y)) dPY|0(y)

=
∫

Y
h (L(y)) f0(y)dµd(y) =

∫

Y
h(L) f0dµd, (4.47)

where the before last step follows from the absolute continuity of PY|0 with respect to
µd. In the last step we have dropped the use of the dummy y to simplify notation. Next
by using the symmetry property of the channel and write

∫

Y
h(L) f0dµd =

∫

Y
h(L)eL f1dµd =

∫

φ−1Y
h(φL)eφLφ f1dµd

=
∫

Y
h(−L)e−L f0dµd

∫

Y
h(−L)e−LdPY|0 =

∫

R

h(−x)e−xdµL|0(x). (4.48)
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Corollary 16 Consider a binary-input output-symmetric channel with output space
Rn defined by an f0 and f1. Consider a binary-input output-symmetric channel with
output space Y defined by an f0 and f1. In case µL|0 admits a density fL it satisfies

fL(x) = ex fL(−x). (4.49)

4.4 Applications to Coded Modulation

4.4.1 Modulation for Channels with Additive Noise
In this section we give an application of the results developed in the previ-
ous section. Consider communication on discrete-time memoryless channels
with inputs and outputs from Rn. Moreover, we assume that the channel is an
additive noise channel such that a channel output Y is given by

Y = X + N, (4.50)

where X ∈ Rn denotes the channel input and N ∈ Rn the additive noise. We
assume that N is a random variable which admits a density fN . Hence the
channel is defined by a channel transition probability density function fY|X

fY|X(y|x) = fN(y− x). (4.51)

Let fX denote a probability density function defining the distribution of X. The
mutual information between Y and X is given by:

I(Y; X) =
∫

Rn

∫

Rn
fY|X(y|x) fX(x) log2

fY|X(y|x)
∫

Rn fY|X(y|x′) fX(x′)
dxdy, (4.52)

and the maximum value of I(Y; X) is achieved for some fX. For many chan-
nels it is not straightforward to generate channel inputs from fX, because it
is possible that the optimal fX is the density of a continuous random variable
while the source provides bits. We consider generating channel inputs from a
discrete set S ⊂ Rn to which we refer to as the signal constellation. If a channel
input Z is generated from S according to a probability assignment PS on the
elements of S , we can achieve an average mutual information of

I(Y; Z) = ∑
z∈S

∫

Rn
fY|X(y|z)PS(z) log2

fY|X(y|z)
∑z′∈S fY|X(y|z′)PS(z′)

dy. (4.53)
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We want to design S and PS in such a way that I(Y; Z) is as close to the ca-
pacity of the channel as possible. To achieve reliable communication one can
opt for using an error-correcting code with a codeword symbol alphabet equal
to S where the marginal distribution on the codeword symbols is given by PS .
However, with this approach it is not easy to come up with practical encoding
and decoding methods. Thus we take a different approach.

At the transmitter we use a set of codes with codeword symbol alphabet A
considerably smaller than the cardinality of S . Here we implicitly assume that
we can find codes over this smaller alphabet with feasible encoding and de-
coding algorithms. In this chapter we opt for binary codes and we can use for
instance LDPC codes. Let X1, . . . , Xd denote a tuple of uniform i.i.d. random
variables taking values in A. The realization of the tuple is used to generate an
element from the signal constellation. For this purpose we define a modulation
map Φ

Φ : (X1, . . . , Xd) → R
n. (4.54)

With the modulation map we generate a channel input Z as

Z = Φ(X1, . . . , Xd), (4.55)

and the additive noise channel takes the form

Y = Z + N = Φ(X1, . . . , Xd) + N. (4.56)

The mutual information between X1, . . . , Xd and Y is given by

I(Y; (X1, . . . , Xd)) = I(Y; Z)

= ∑
z∈S

∫

Rn
fY|X(y|z)PS(z) log2

fY|X(y|z)
∑z′∈S fY|X(y|z′)PS(z′)

dy, (4.57)

where the first equality follows from the fact that Z is a deterministic function
of X1, . . . , Xd. Furthermore, we can also write I(Y; (X1, . . . , Xd)) as

I(Y; (X1, . . . , Xd)) = I(X1; Y) + I(X2; Y|X1)+

. . . + I(Xd; Y|X1, . . . , Xd−1), (4.58)

by the chain rule of mutual information. If each of the Xi is encoded sepa-
rately, we can use a sequential decoding procedure at the receiver. This is the
multilevel coding (MLC) strategy with multi-stage decoding (MSD) [8]. An
alternative is to drop the conditioning on the Xi in (4.58) which gives us:

I(Y; (X1, . . . , Xd)) ≥ I(X1; Y) + I(X2; Y) + . . . + I(Xd; Y). (4.59)
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In the latter case can can also opt for a single code at the transmitter which nat-
urally leads to bit-interleaved coded modulation (BICM) [9]. Both approaches
reduce the problem of approacing capacity on the channel to achieving capac-
ity on a set of equivalent channels. In MLC-MSD we can achieve a rate given
by the left-handside of (4.58) by multi-stage decoding. The rates achievable on
each of the equivalent channels is given by the right-handside of (4.58). With
BICM we can achieve a rate given by the right-handside of (4.59) by parallel-
and-independent (PID) decoding. However, in both cases the achievable rate
and the nature of the equivalent channels depends on the choice of Φ. Next, we
use the results of the previous sections to identify Φ for which the equivalent
binary channels are symmetric. We will use MLC-MSD.

4.4.2 Symmetric Channels and Symmetric Constellations
Consider a channel with additive noise defined by (4.50). Moreover, we as-
sume that N admits a denisity fN . We consider the AWGN channel for which
fN is given by

fN(x) =
1

(2πσ2)n/2 exp
(

−xTx
2σ2

)

, (4.60)

where x ∈ R
n. We assume that fN exhibits symmetry and we consider fN

which are invariant with respect to the elements of the orthogonal group of Rn

which we denote by On.

φ fN = fN for φ ∈ On. (4.61)

The multivariate Gaussian density of (4.60) satisfies this condition.
To communicate over this channel we use a signal constellation S generated

by a modulation map Φ

Φ : GF(2) 7→ R
n. (4.62)

Next, consider the case where we encode each of the Xi by a binary code
and use a multistage decoding procedure at the receiver. For the purpose of
error-control coding we are interested in the properties of the equivalent binary
channels. These properties are determined by the choice of Φ and we wish to
choose Φ such that the equivalent binary channels are output-symmetric.

Now define S0|x1,...,xl−1
and S1|x1,...,xl−1

as

S0|x1,...,xl−1
=
{

Φ(x1, . . . , xl−1, 0, xl+1, . . . , xd)|xj ∈ {0, 1}, j = l + 1 . . . d
}

S1|x1,...,xl−1
=
{

Φ(x1, . . . , xl−1, 1, xl+1, . . . , xd)|xj ∈ {0, 1}, j = l + 1 . . . d
}

.
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The sets S0|x1,...,xl−1
and S1|x1,...,xl−1

partition the signal constellation in two
parts. S0|x1,...,xl−1

contains all constellation elements for which X1 to Xl−1 are
given by x1 to xl−1 and Xl = 0. S1|x1,...,xl−1

contains all constellation elements
for which X1 to Xl−1 are given by x1 to xl−1 and Xl = 1. With these definitions
we observe that the binary channel for Xl is defined by a pair of transition
densities fl,0 and fl,1

fl,0(y) =
1

2d−l ∑
x∈S0|x1,...,xl−1

fN(y− x)

fl,1(y) =
1

2d−l ∑
x∈S1|x1,...,xl−1

fN(y− x) (4.63)

Now, let Tn define the isometry group of translations of Rn and write the ele-
ments of Tn as

φT(x)y = y + x, (4.64)

where y ∈ Rn. In terms of the elements of Tn we can write fl,0 and fl,1 as

fl,0 =
1

2d−l ∑
x∈S0|x1,...,xl−1

φT(x) fN

fl,1 =
1

2d−l ∑
x∈S1|x1,...,xl−1

φT(x) fN (4.65)

The following theorem provides a sufficient condition on the constellation
partition {S0|x1,...,xl−1

,S1|x1,...,xl−1
} such that the equivalent binary channel for

Xl is symmetric.

Theorem 17 Consider a channel with inputs and output from R
n as defined by (4.50).

Moreover, the noise density fN is invariant with respect to the elements of On. We use
a modulation map Φ(X1, . . . , Xd) to generate a signal constellation and at the receiver
we use a multistage decoding procedure where the order in which we decode the bits
is X1, X2, . . . , Xd. The equivalent binary channel at level l is defined by f l,0 and fl,1.
This binary channel is symmetric if there exists an isometry φ of Rn with φ2 = I such
that

φS0|x1,...,xl−1
= S1|x1,...,xl−1

. (4.66)
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Proof 15 In case (4.66) holds there exists for each x0 ∈ S0|x1,...,xl−1
a x1 ∈ S0|x1,...,xl−1

with x1 = φx0. Now, if we show that

φφT(x0)
fN = φT(x1)

fN , (4.67)

we have

φ fl,0 = φ ∑
x∈S0|x1,...,xl−1

φT(x) fN = ∑
x∈S0|x1,...,xl−1

φφT(x) fN

= ∑
x∈S1|x1,...,xl−1

φT(x) fN = fl,1, (4.68)

which would proof the theorem. To show this, first note that we can write any isometry
φ of Rn for which φ2 = I as

φ = φT(b)φO(A)φT(−b), (4.69)

for b ∈ R
n and where φO(A) is an element of On and is defined by an orthogonal

matrix A ∈ R
n×n. Next, note that for the elements of the translational group we have

φT(φT(b)c) = φT(−b)φT(c), (4.70)

for b, c ∈ Rn. This allows us to write the left-handside of (4.67) as

φφT(x0)
fN = φφT(φ−1x1)

fN = φφT(φT(−b)φO(A)φT(b)x1)
fN

= φφT(b)φT(φO(A)φT(b)x1)
fN . (4.71)

Next, note that we have the following property for composition of elements from the
translational isometry group and the orthogonal isometry group of Rn

φT(φO(A)b) = φO(A)φT(b)φO(A), (4.72)

for b ∈ Rn This allows us to write

φφT(x0)
fN = φφT(b)φo(A)φT(φT(b)x1)

φo(A) fN

= φφT(b)φo(A)φT(−b)φT(x1)
φo(A) fN

= φ2φT(x1)
φo(A) fN = φT(x1)

φo(A) fN . (4.73)

Now we make use of the symmetry of fN with respect to the elements of On and write
(4.73) as

φφt(x0)
fN = φT(x1)

φO(A) fN = φT(x1)
fN . (4.74)
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R SNR [dB] d |S| I(Y; Z) ∆AWGN [dB] ∆QAM [dB]
3 8.45 5 32 2.931 0.23 0.30
3 8.45 6 64 2.968 0.11 0.44
4 11.76 6 64 3.885 0.37 0.47

Table 4.1: Parameters of the designed isometry signal constellations for the
two-dimensional AWGN channel

We observe in the proof of the theorem that the symmetry group of the noise
density gives us the essential degrees of freedom in choosing the signal con-
stellation.

4.4.3 Design Example for the AWGN Channel

Now, consider a multilevel coded system for which we want to design a mod-
ulation map which is able to perform close to the capacity of the AWGN chan-
nel. We can generate channel inputs for the AWGN channel by choosing the
modulation map as

Z = φ(X1, . . . , Xd) = φ
X1
1 φX2

2 · · · φXd
d c0, (4.75)

where c0 is a constant from R
n and φ1 to φd are representations of the cyclic

isometry group of order 2 on Rn. Furthermore, X1, . . . , Xd are uniform i.i.d.
random bit variables taking values in {0, 1}. When we use a multistage decod-
ing procedure at the receiver with decoding order X1, . . . , Xd, the equivalent
binary channel are output symmetric.

As in [39] we can consider a numerical maximization of the constrained
constellation capacity. For this purpose we consider an AWGN channel in two
dimensions. As an illustration we have performed a numerical maximization
of the constrained constellation capacity for modulation maps given by (4.75)
for target rates of 3 bit/use and 4 bit/use and the optimization results are given
in Table 4.1. The table gives the target rate R for which we the design the sig-
nal constellation and the SNR for which the two-dimensional AWGN channel
achieves the rate. The rate which is achieved at the SNR is given by I(Y; Z).
The distance from the capacity of the channel is given by ∆AWGN and the gain
with respect to a conventional quadrature amplitude modulation (QAM) con-
stellation with the same number of constellation symbols is given by ∆QAM.
The geometrical structure of these constellations is illustrated in Figure 4.1,
Figure 4.2 and Figure 4.3.
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Figure 4.1: Isometry constellation with d = 5 designed for 3 bit/s/Hz.

The constrained constellation capacity of these constellation is close to the
capacity of the AWGN and all constellations achieve a gain with respect to
QAM contellations. However, the target rates are relatively low and for higher
rates gains will be larger. As in [39] we can use binary linear codes (e.g. LDPC)
to achieve the constrained constellation capacity since the equivalent binary
channels are symmetric.
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Figure 4.2: Isometry constellation with d = 6 designed for 3 bit/s/Hz.
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Figure 4.3: Isometry constellation with d = 6 designed for 4 bit/s/Hz.
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4.5 Open Questions and Future Research

We conclude this chapter with some open questions and suggestions for fu-
ture research. The notion of channel symmetry we have defined has relations
with Gallager symmetry and the concept of a regular channel. We expect that
these two concepts are a subset of our definition of channel symmetry. For in-
stance one can restrict oneself to cyclic isometry groups which would provide
a stronger notion of channel symmetry. In the case of a channel with binary
channel inputs the the only group is the cyclic group with two elements.

In the end we provided an application by letting isometries of Rn act on
some initial vector. These results are related to group codes for the AWGN
channel which is a widely studied subject. Furthermore, the results we have
presented in this chapter have a relation with the so-called geometrically uni-
form constellations of [46]. In fact, the modulation maps we have constructed
for R2 lead to a geometrically uniform constellation partition.

We only considered multilevel coding with multistage decoding as an ap-
plication. However, an interesting question is if one can construct constella-
tions for channels with Gaussian noise in e.g. R3 and R4 which have a good
parallel-and-independent decoding capacity and provide signal shaping. For
these constellations one can use a single binary error-correcting code in a bit-
interleaved coded modulation setting.

For some modulation maps an analytical maximization of the constrained
constellation capacity might be feasible. This is worth investigating since for
higher values of d the number of degrees of freedom increases and numerical
optimization becomes difficult.
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